{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "Ie1BBU5EY087"
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zXcAAp88YwG5"
},
"source": [
"## Day 3: Cells in Silicon\n",
"\n",
"Welcome to Day 3! Today, we start with our discussion of Hodgkin Huxley Neurons and how we can simulate them in Python using Tensorflow and Numerical Integration.\n",
"\n",
"The electric potential measured across the membranes of excitable cells, such as neurons or heart cells, can undergo transient changes when perturbed by external inputs. When the inputs to a neuron are sufficiently large these transient changes can regeneratively build up into a large deviation from the resting state known as an action potential. Action potentials propagate undiminished along the axon and perturb post-synaptic neurons. The Hodgkin-Huxley model is a system of differential equations that describe the generation an action potential and its propagation along the axon. We provide only a brief overview of the Hodgkin-Huxley model. A number of classic references (Dayan 2005, Johnston 1995) and the original papers by Hodgkin and Huxley (Huxley 1952) chronicle the history and the details of the model. An excellent set of MOOCS and the accompanying textbooks (Gerstner 2014, Dayan 2005) give an accessible introduction to the topic"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "y4uukJ1NYwG6"
},
"source": [
"### What is the Hodgkin Huxley Neuron Model? \n",
"\n",
"The cell membrane, a 5nm thick lipid bilayer, separates the inside from the outside of the neuron. The membrane is largely impermeable to charged ions present on either side. The concentration of $\\text{Na}^{+}$ ions outside the cell is greater than its concentration inside, while $\\text{K}^{+}$ ions are relatively abundant inside compared to the outside. In addition to these there are chloride ($\\text{Cl}^{-}$), calcium ($\\text{Ca}^{2+}$) and magnesium ions ($\\text{Mg}^{+}$) that populate the cellular milieu. The differences in ionic abundances across the membrane cause a net accumulation of positive ions on one side of the membrane and negative ions on the other, and thus a potential difference across the membrane. Embedded on the membrane are ion channels that are highly selective to the ion species it lets across. In the squid axon, Hodgkin and Huxley found that there were only two types of ion channels ($\\text{Na}^{+}$ and $\\text{K}^{+}$), in addition to a non-specific leak channel. The Hodgkin-Huxley model of neurons can be understood with the help of an equivalent electrical circuit given below. The cell membrane acts as a capacitor. The total injected current ($I$) can be written as the sum of the capacitive current $I_{C}$, ionic currents $I_{Na}$ and $I_{K}$ and the leak current $I_L$.\n",
"\n",
"\n",
"\n",
"\n",
"$$ I = I_{C}(t) + I_{Na}(t) + I_{K}(t)$$\n",
"where, \n",
"$$C_m = 1 \\mu F/cm^2$$\n",
"$$I_{Na} = g_{Na}(u-E_{Na})$$\n",
"$$I_{K} = g_{k}(u-E_K)$$\n",
"$$I_{L} = g_{L}(u-E_L)$$\n",
"\n",
"The equation describing the membrane potential can thus be written as follows,\n",
"\n",
"$$C_m\\frac{dV}{dt}=−I_{Na}(t)−I_{K}(t)−I_{L}(t)+I(t)$$\n",
"\n",
"Hodgkin and Huxley discovered that the $Na$ and the $K$ channels do not act as Ohmic conductances, but are modulated by the potential across the membrane. \n",
"Changes in potential had a nonlinear effect on flow of ionic currents. Based in their experimental results they obtained a system of differential equations that described the temporal evolution of the membrane potential in terms of changes in ionic currents (chiefly $\\text{Na}^{+}$ and $\\text{K}^{+}$). \n",
"\n",
"$$I = g_{Na}m^3h(u−E_{Na})$$\n",
"$$I_K = g_Kn^4(u−E_K)$$\n",
"$$I_L = g_L(u−E_L)$$\n",
"\n",
"where $E_{Na}=50\\ mV$, $E_K = -95\\ mV$ and $E_L=-55\\ mV$ are the reversal potentials; $g_{Na} = 100\\ \\mu S/cm^2$, $g_K = 10\\ \\mu S/cm^2$ and $g_L = 0.15\\ \\mu S/cm^2$ are the channel conductances; and m,h, and n are gating variables that follow the dynamics given by:\n",
"\n",
"$$\\frac{dm}{dt} = - \\frac{1}{\\tau_m}(m-m_0) $$\n",
"$$\\frac{dh}{dt} = - \\frac{1}{\\tau_h}(h-h_0)$$\n",
"$$\\frac{dn}{dt} = - \\frac{1}{\\tau_n}(n-n_0)$$\n",
"\n",
"where $\\tau_m$, $\\tau_h$ and $\\tau_n$ are empirically determined voltage dependent time constants and $m_0$, $h_0$ and $n_0$ are voltage dependent asymptotic gating values.\n",
"\n",
"\n",
"\n",
"\n",
"On day 2, we had created a RK4 based numerical integrator. Recall this implementation:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "5Xe2Q8QwYwG8"
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import tensorflow.compat.v1 as tf\n",
"tf.disable_eager_execution()\n",
"\n",
"%matplotlib inline\n",
"\n",
"\n",
"def tf_check_type(t, y0): # Ensure Input is Correct\n",
" \"\"\"\n",
" This function checks the type of the input to ensure that it is a floating point number.\n",
" \"\"\"\n",
" if not (y0.dtype.is_floating and t.dtype.is_floating):\n",
" raise TypeError('Error: y0 and t must be floating point numbers.')\n",
"\n",
"class _Tf_Integrator():\n",
" \"\"\"\n",
" This class implements the Runge-Kutta 4th order method in TensorFlow.\n",
" \"\"\"\n",
" def integrate(self, func, y0, t):\n",
" \"\"\"\n",
" This function integrates a function func using the Runge-Kutta 4th order method in TensorFlow.\n",
"\n",
" Parameters:\n",
" -----------\n",
" func: function\n",
" The function to be integrated.\n",
" y0: float\n",
" The initial condition.\n",
" t: numpy array\n",
" The time array.\n",
" \"\"\"\n",
" time_delta_grid = t[1:] - t[:-1] # define the time step at each point\n",
" \n",
" def scan_func(y, t_dt): # define the scan function that performs the integration step\n",
" \"\"\"\n",
" This function performs the integration step.\n",
" \n",
" Parameters:\n",
" -----------\n",
" y: float\n",
" The value of y at which the function is being evaluated.\n",
" t_dt: (float, float)\n",
" The time point and time step at which the function is being evaluated.\n",
" \"\"\"\n",
" t, dt = t_dt # unpack the time point and time step\n",
" dy = self._step_func(func,t,dt,y) # Make code more modular.\n",
" return y + dy\n",
"\n",
" y = tf.scan(scan_func, (t[:-1], time_delta_grid),y0)\n",
" return tf.concat([[y0], y], axis=0)\n",
" \n",
" def _step_func(self, func, t, dt, y):\n",
" \"\"\"\n",
" This function determines the value of the integration step.\n",
"\n",
" Parameters:\n",
" -----------\n",
" func: function\n",
" The function to be integrated.\n",
" t: float\n",
" The time point at which the function is being evaluated.\n",
" dt: float\n",
" The time step at which the function is being integrated.\n",
" y: float\n",
" The value of y at which the function is being evaluated.\n",
" \"\"\"\n",
" k1 = func(y, t)\n",
" half_step = t + dt / 2\n",
" dt_cast = tf.cast(dt, y.dtype) # Failsafe\n",
"\n",
" k2 = func(y + dt_cast * k1 / 2, half_step)\n",
" k3 = func(y + dt_cast * k2 / 2, half_step)\n",
" k4 = func(y + dt_cast * k3, t + dt)\n",
" return tf.add_n([k1, 2 * k2, 2 * k3, k4]) * (dt_cast / 6) # add all update terms\n",
" \n",
"def odeint(func, y0, t):\n",
" \"\"\"\n",
" This function integrates the function func using the Runge-Kutta 4th order method implemented in the _Tf_Integrator class.\n",
"\n",
" Parameters:\n",
" -----------\n",
" func: function\n",
" The function to be integrated.\n",
" y0: float\n",
" The initial condition.\n",
" t: numpy array\n",
" The time array.\n",
" \"\"\"\n",
" # Ensure Input is in the form of TensorFlow Tensors\n",
" t = tf.convert_to_tensor(t, name='t')\n",
" y0 = tf.convert_to_tensor(y0, name='y0')\n",
" tf_check_type(y0,t) # Ensure Input is of the correct type\n",
" return _Tf_Integrator().integrate(func,y0,t)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EYZ3iWrVYwG9"
},
"source": [
"#### Implementing the Hodgkin-Huxley neuron model\n",
"\n",
"The variables of the Hodgkin Huxley neuron model that are updated at each integration time step are, the membrane potential, $V$, the sodium activation gating variable, $m$, the sodium inactivation gating variable, $h$, and the potassium channel gating variable, $n$. The dynamics are given by Equations above. In the following code, we define the parameters associated with the conductances, including the formulae for $\\tau_{m}$, $\\tau_{h}$, $\\tau_{n}$ and the voltage dependent steady state values of the gating variables. \n",
"\n",
"##### Step 1: Defining Parameters of the Neuron "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "5FvbhtGGYwG-"
},
"outputs": [],
"source": [
"C_m = 1 # Membrane Capacitance\n",
"\n",
"g_K = 10 # K-channel Conductance\n",
"E_K = -95 # K-channel Reversal Potential\n",
"\n",
"g_Na = 100 # Na-channel Conductance\n",
"E_Na = 50 # Na-channel Reversal Potential\n",
"\n",
"g_L = 0.15 # Leak Conductance\n",
"E_L = -55 # Leak Reversal Potential"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0zl5CdV2YwG-"
},
"source": [
"##### Step 2: Defining functions that calculate $\\tau_m$, $\\tau_h$, $\\tau_n$, $m_0$, $h_0$, $n_0$ \n",
"\n",
"Note: Always use Tensorflow functions for all mathematical operations.\n",
"\n",
"For our Hodgkin Huxley Model, we will determine the values of $\\tau_m$, $\\tau_h$, $\\tau_n$, $m_0$, $h_0$, $n_0$ by the following equations:\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "bM9DWobKYwG_"
},
"outputs": [],
"source": [
"def K_prop(V):\n",
" \"\"\"\n",
" This function determines the K-channel gating dynamics.\n",
"\n",
" Parameters:\n",
" -----------\n",
" V: float\n",
" The membrane potential.\n",
" \"\"\"\n",
" T = 22 # Temperature\n",
" phi = 3.0**((T-36.0)/10) # Temperature-correction factor\n",
" V_ = V-(-50) # Voltage baseline shift\n",
" \n",
" alpha_n = 0.02*(15.0 - V_)/(tf.exp((15.0 - V_)/5.0) - 1.0) # Alpha for the K-channel gating variable n\n",
" beta_n = 0.5*tf.exp((10.0 - V_)/40.0) # Beta for the K-channel gating variable n\n",
" \n",
" t_n = 1.0/((alpha_n+beta_n)*phi) # Time constant for the K-channel gating variable n\n",
" n_0 = alpha_n/(alpha_n+beta_n) # Steady-state value for the K-channel gating variable n\n",
" \n",
" return n_0, t_n\n",
"\n",
"\n",
"def Na_prop(V):\n",
" \"\"\"\n",
" This function determines the Na-channel gating dynamics.\n",
" \n",
" Parameters:\n",
" -----------\n",
" V: float\n",
" The membrane potential.\n",
" \"\"\"\n",
" T = 22 # Temperature \n",
" phi = 3.0**((T-36)/10) # Temperature-correction factor\n",
" V_ = V-(-50) # Voltage baseline shift\n",
" \n",
" alpha_m = 0.32*(13.0 - V_)/(tf.exp((13.0 - V_)/4.0) - 1.0) # Alpha for the Na-channel gating variable m\n",
" beta_m = 0.28*(V_ - 40.0)/(tf.exp((V_ - 40.0)/5.0) - 1.0) # Beta for the Na-channel gating variable m\n",
" \n",
" alpha_h = 0.128*tf.exp((17.0 - V_)/18.0) # Alpha for the Na-channel gating variable h\n",
" beta_h = 4.0/(tf.exp((40.0 - V_)/5.0) + 1.0) # Beta for the Na-channel gating variable h\n",
" \n",
" t_m = 1.0/((alpha_m+beta_m)*phi) # Time constant for the Na-channel gating variable m\n",
" t_h = 1.0/((alpha_h+beta_h)*phi) # Time constant for the Na-channel gating variable h\n",
" \n",
" m_0 = alpha_m/(alpha_m+beta_m) # Steady-state value for the Na-channel gating variable m\n",
" h_0 = alpha_h/(alpha_h+beta_h) # Steady-state value for the Na-channel gating variable h\n",
" \n",
" return m_0, t_m, h_0, t_h"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZrNWFpIZYwHA"
},
"source": [
"##### Step 3: Defining function that calculate Neuronal currents\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "F-tyJTzoYwHA"
},
"outputs": [],
"source": [
"def I_K(V, n):\n",
" \"\"\"\n",
" This function determines the K-channel current.\n",
"\n",
" Parameters:\n",
" -----------\n",
" V: float\n",
" The membrane potential.\n",
" n: float \n",
" The K-channel gating variable n.\n",
" \"\"\"\n",
" return g_K * n**4 * (V - E_K)\n",
"\n",
"def I_Na(V, m, h):\n",
" \"\"\"\n",
" This function determines the Na-channel current.\n",
" \n",
" Parameters:\n",
" -----------\n",
" V: float\n",
" The membrane potential.\n",
" m: float\n",
" The Na-channel gating variable m.\n",
" h: float\n",
" The Na-channel gating variable h.\n",
" \"\"\"\n",
" return g_Na * m**3 * h * (V - E_Na)\n",
"\n",
"def I_L(V):\n",
" \"\"\"\n",
" This function determines the leak current.\n",
"\n",
" Parameters:\n",
" -----------\n",
" V: float\n",
" The membrane potential.\n",
" \"\"\"\n",
" return g_L * (V - E_L)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bKPerQeBYwHB"
},
"source": [
"##### Step 4: Define the function dX/dt where X is the State Vector"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "RPFuhqFWYwHC"
},
"outputs": [],
"source": [
"def dXdt(X, t):\n",
" \"\"\"\n",
" This function determines the derivatives of the membrane voltage and gating variables for a single neuron.\n",
"\n",
" Parameters:\n",
" -----------\n",
" X: float\n",
" The state vector given by the [V, n, m, h] where V is the membrane potential, n is the K-channel gating variable, m and h are the Na-channel gating variables.\n",
" t: float\n",
" The time points at which the derivatives are being evaluated.\n",
" \"\"\"\n",
" V = X[0:1] # The first element of the state vector is the membrane potential\n",
" m = X[1:2] # The second element of the state vector is the Na-channel gating variable m\n",
" h = X[2:3] # The third element of the state vector is the Na-channel gating variable h\n",
" n = X[3:4] # The fourth element of the state vector is the K-channel gating variable n\n",
"\n",
" # Note that here we dont index the elements directly because we want the values as a tensor rather than a single value\n",
"\n",
" dVdt = (5 - I_Na(V, m, h) - I_K(V, n) - I_L(V)) / C_m # The derivative of the membrane potential\n",
" # Here the current injection I_injected = 5 uA\n",
" \n",
" m0,tm,h0,th = Na_prop(V) # Calculate the dynamics of the Na-channel gating variables\n",
" n0,tn = K_prop(V) # Calculate the dynamics of the K-channel gating variables\n",
"\n",
" dmdt = - (1.0/tm)*(m-m0) # The derivative of the Na-channel gating variable m\n",
" dhdt = - (1.0/th)*(h-h0) # The derivative of the Na-channel gating variable h\n",
" dndt = - (1.0/tn)*(n-n0) # The derivative of the K-channel gating variable n\n",
"\n",
" out = tf.concat([dVdt,dmdt,dhdt,dndt],0) # Concatenate the derivatives into a single tensor\n",
" return out"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HKLn1vOqYwHC"
},
"source": [
"##### Step 5: Define Initial Condition and Integrate"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "Kp9OS-VgYwHC"
},
"outputs": [],
"source": [
"y0 = tf.constant([-71,0,0,0], dtype=tf.float64) # Initial conditions\n",
"\n",
"epsilon = 0.01 # The step size for the numerical integration\n",
"t = np.arange(0,200,epsilon) # The time points at which the numerical integration is being performed\n",
"\n",
"state = odeint(dXdt,y0,t) # Solve the differential equation\n",
"\n",
"with tf.Session() as sess:\n",
" state = sess.run(state) # Run the session"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iea3oYdYYwHD"
},
"source": [
"##### Step 6: Plot Output"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "E5XeU1y8YwHD",
"outputId": "b8b66b45-fbcd-4321-949e-888a24523490"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABp2klEQVR4nO29ebgd2Vne+/v2dCbNY7emlnp22+5ut9vtMTg2ZrDxwOWSXGdgSHjwdeLkQkhiINwASS4Jcy4kQGKwbwzYGALGNjOGGIPtVneru9VSS+pBOlJrOhrOPO+p1v2jqvauU7uq9t5V3zrnSKr3efTso32kWrVq1fqG9xuWGGPIkSNHjhw5giis9Q3kyJEjR471h1w55MiRI0eODuTKIUeOHDlydCBXDjly5MiRowO5csiRI0eOHB0orfUNaGDHjh3m4MGDa30bOXLkyHFD4emnnx43xuyM+t1NoRwOHjzIkSNH1vo2cuTIkeOGgoi8Eve7nFbKkSNHjhwdyJVDjhw5cuToQK4ccuTIkSNHB3LlkCNHjhw5OpArhxw5cuTI0YFcOeTIkSNHjg7kyiFHjhw5cnQgVw59YnqxxqmxWWvXvzC5yBdPXsVWK3VjDL/z1AVGr89buT64c/itJ89TbzrWxvjT56/wzPkpa9efWarz64+fY2apbm2Mp85N8sWTV61d33EMv3H4FS5OLVob48z1eX7nyAUcx17r/z86NsbxizPWrj8xX+U3Hj/HYq1hbYyvnRnnyy9dt3Z9G8iVQ5/4kd9/nnf/wt/w+JkJK9f/uT9/ke/99SP8/rOXrFx/dHyBj/7eMd75c19mud60MsbHv3KWH/7scf7L/zpt5fqOY/jwbz7Nt/3y17gwaUfw/fHxMX708yf4yKeesXJ9gH/z2eN8768f4Ssvj1u5/tPnp/i3n3ued/38l2laEt7/5S9f5qO/e4z/72vnrFx/aqHGRz79DO/7r19hcqFmZYz/+fRF/u3nT/BvP3fCyvUBvveTR/iuTzzJsYvT1sbQRq4c+sR5Txj9xuFzVq5/fb4KwKefOG/l+mPTy62f/+rFa1bGuDrrjvGZJ89bsSinA9a8LSV6Zcadw1dOjzPurYk2rs251/2tJ+2stT+H5brDk2cnrYwx5o1haw7LjbYB8/mjdtZ6bHoJgD84dtma97DoGWK2npMN5MqhT5SKAsCTZ6esUD9zy+7L+cz5KRaq+i9qw2lTPV85bcdiXai5G+HaXJWXr+nTV3PLbeVgy+oOComvWfISq57g++qZcSvvkhO45lctrXXNow5PX5tvGQWaCNoWh0dtrYM7h1rD4cg5O1TlSMXtVHR41I6StoFcOfQJ/2Udn6+2LD/d65vWOC9dnVO/vi8vKqUCp8b0r++OYRiuFAGsxGf8Ndg4UOLU2KwVwWoMlItCuSjWYkyOcecwvVjn8oy+YPVhcw7G0Frrk5f1xwiu7TFLcQdjYKjszcHac3LncXZ8gdlle3EsTeTKoV8YQ8F1HloUk/LluW/3RsCScsB9SV91+yZeujJnLfB9964NlIvCi1YUXHsOc9VGi9pQHQMYKBW5a+cGXrpiR4li3DkAVsbwl/ZVt2/iBUtzMMa05mBnrd3PA9uGGZtZZqmmHydzjGHLcJnbNw9aW2vHwB3bhwE4N75gZQxt5MqhTzgGDu4YAeCVCTvKYe/WIQoCl6aWrFwf4I5tw8xVG8wu61NXjjGUiwVu3zxkZw7e5/5t7ma7NK0/hmMM4o1h4/rgKmp/DhctzQHgju0jjM0s0bCQPWaATYMlNg+Vrb6vd+1099y5CX3BasBd663DVtbBHcNwpyc3zubK4eaEYwz7trob+rKlDV0qCLs3DXJp2h6Hu3frEGBnDsa4m23PlkFL13cnsc+bgzWhJLB3y5A15eAY2L1pgHJRrK0DuOvgGKzQoMZAQYQ9W4as7QdwPQew+L6KWHtfwfccXOVg633SRq4c+oRjYKBUYNNgyVpqXUGE2zcPMjZjT7Du2WJPOTjGtASGjY1gQgrOzhimtQ5zyw0rPLExhmJBrHtYe721tvE+OcYgAnu3DNpZB+9z16ZBAK5bUXDuHPZsGeLKzLKdtF8DQ5UiGwdKVuZgA7ly6BPGoxu2bxhgwoJy8Dfb7ZuHuGIh+8N/7fdsdjeblTE8q/u2TYNcm6uqxzX8q41USmwctLPZDCACt3nP6ZqltRARdm0csJIu61vdezb7ysHSWuN6ujYTNHZtHAAsKQdcg+y2zYM0HGPF6PNpyp0bB3LlcLPCd6O3j1SYsLCh/etvHSkzvWjHWgVXuQF2xgAKAttGKjQdox7X8AWGeGPY2MytdRiuADBlZS1c+m2rpTn4WnTbBotzoL3W04s19boW364YKBfZMly2poBEaK319KKF9wn3fdqxccDKHGwgVw59wjGGQsHdDBPzdiwMvBfV6mYrFRipFC0JVoMQEKzKY/hzENznNGVhM/uW3rYRdw7az8kEFdywJQXnaYftI3bWAdqUzNbhCo5BnX5rPSdg54YBrs3Z8X5srjW0FVDuOdzEcBdZXIvVkoXhCz0rm837dL2TiiWB0bbqAfXn1FIO/jpYEazuHLZaEqz+HAoibNvgKjht+s23KyqlAhsGSlaUqCtYxZ4S9T7999Wepxv0Em3tCWGbZ/TdCFhz5SAiRRF5VkT+0Pv7IRF5QkROi8hvi0hlre8xCJ9u2DhYYt5CGmiQVgL9zdZByVh0oW0J1vAc7Ck4dzODvoJzAhbxtuEK9aZhXrkivu1hWaQpcT3pLcPu+6pNXQXXetNg2VrqNUJgz9nzfjYNlZhdblirL9LEmisH4PuAU4G//xTwn40xdwNTwPesyV3FwPGK4DYMlFmqN9Vzx02I/9TebB2UjEUXertFNx3aVICNxAA/8WCoUmSoXNT3HLzPoHeib3W7oxS898kOXbLSc7DnYXmC1UaX3I74kj0vcfNQmaZjWi1m1jPWVDmIyD7gW4Bf8/4uwDuB3/X+ySeBb12Tm4uB4/GTGwfdXina1p4TelG1XdC2UBK2DJftBVpF2OxZk9ptr8ObrdpwWn2KNMcoiFsKv2VY3+oOUmObh9znNKceuPd+CMSwtGECMTLQF6zt/lDuc7KhHPz40mDZjiEQ9n4AO0pOGWvtOfy/wEcB3/zeDkwbY/xdchHYG/UfReRDInJERI5cv756fdINbv77Bk85aG9og/uibrCkfIKB0A0DJSvN/Xyr2282pq9AV84BUKf4fO8HvOek3K0zag7a7xItOsOlQdWvz0qaFWy8r+5nwROsc9WGeh2CHyMD1+jTXut23AQ2DdkxmGxgzZSDiLwXuGaMeTrN/zfGfMwY86gx5tGdO3cq3108HMe19jZZUg7+9TcO2N1svgLSvj60g7nFgjBcKaoL7iAls8HWc8J9RuA+JxuCFdqCG1Z2m9VAUChtHCwxZ2utgRFLSjroYfmCVf99Mi0vccOA/lq3DQG5oTyH0hqO/Vbg/SLyHmAQ2AT8ArBFREqe97APsNPEPSVMIOYA+kIJXKFnbbO1eGhXAVUbDrWGQ6WkZycEKZkNA/oKyAQ2mzUPzqPGwM4cfIFRsKjg/DRoEWGkYtFLFCgXCwyUChaUdPs5+fTb7HK9RVlqIOiI2DCY2gouOAd7p85pYc08B2PMDxtj9hljDgIfBP6XMeYfAF8Cvt37Z98FfH6NbjESfkxggy1rz6NkhitFRGwIDPczaHVrCw2fwwXP6rYQlwEv9mNpDiZEK9mziC1SiN6n7yUu1prqlIwTMAQ2WhCsTuA5+d66jRjWCmPG1lojbBqyMwcbWOuYQxR+EPgBETmNG4P4+Brfzwr4RXAbbdFK3osqImyoWLBivE9B2t6JBUvJt7o3WolrdHoONp5TUGCoKx/vUxBrMYdg4L5lCKjz6W1DYOSG9RLbhoCVORDhJd4AZzqsJa3UgjHmr4C/8n4eBR5by/tJguP1kvGDrYvKKWmGgMVqoZYiGJC2p+Bsz8H9tErJhOag7/2012GgVKBcFGvUFSEv0ee9NeD30QI7VnfQS/T33FLdQnzJD0hboRDdzyBdvGjp/HZNrEfPYZ3DjTn4J0ctKS+yY5nrXkFneHETbWsSAsFcm5sNyzEH72dfYGgWLgUDreJZ9jaKKt0x7AaMbcaXCMTIRgbcPbdQ1U5bDgSkrcQc2nMYKBUoCCwqz8EGcuXQJ3zaZ7DiPrplZeUQTKuz6eKuoGSsCoyyFRoAPO/HUmLAClppsIQxyl5iwCL2x7CXBmqRfgvGlyxb3UMtb11/jBVzUK5gDoZ5RIThin66rA3kyqFP+BXSlWKBYkHUX1Q/GwrsBPiiKBkblInYnIP3KQKDZXcdbNQ5tOkSfQUUzFbyx9BObgi26LCa8hug3/QTA9zPgggj3lnV+lQurUmMDJRoOIZqQ7HzQWAO4Cab2DjuVBu5cugTjmNaVMBQuchSTbl9Bi5dAi7Hao/DFWsFZEGBMVwpWsmGAncOriVW1KczAtakT2dojhGsVAcYqRTtCD3sZ6atSo0AMGwrzhcyyECXpgzGl8BVQHn7jJsQQcpksFy0EHNov6jDA/rXb9NK7biJPjVmWkJvuFKk4Rjqmj2oAlSDP4b6HAKFUa34kuKGNiGBMVSxsNYR2Urz6nz9ynWwNQcRoVIqULLirbcNARt7ol2M2H6fFi3UnGgjVw59IkiZDFUKlmIO7ZfIxvXB53DtBNWDm23QQuA+arOpK2lnpeAGXYHhBIQeeIaGsjXpBHhzG+sAraRioL0OuoH7lUrU9UQtGgIW9kSn56DvJdpArhz6hBuodH8eLpcsBMfaG2vIgsAwAUqmXBSKBdEfAzo227LiGOHNZkOwRnkOmhvarBCrdqxuH0FDQHMdYCUlM1gpYgyqfH3YEBgZsLDngoaAFS/R/Wx70/pzsIFcOfSJIMc6WCmyVNeNOWBWCtZFbUvM+xShHTexQI0FLT1QFqyhTB8blEwww8SKhxWixmwaAgURBr32KFa8xJBg1fWwOuk3K7VFrDQEVD1d02kI5DGHmxDOCtqnoG+JsdIiVrfEQpkTNuImURyuDVopGNfQF6wr6T2wQyvZjV+5nwKUigUqxYIVWsmuYHU/fe9kpFKyEJAO7DkLhkDY+xmulPJspZsRQTd6uFJiUblaMxiQtmqJeX8fqhSsUjI2uO4Oa9KCYPWLHSHgOdimlSwIPQjGNfTXesX7asFLDJ7nAHay38JBdbBLg44MFPM6h5sRjrFNBQQsVhtWTDjTp6xvxTgOLanXUnAWC8hsWd1husQKNRYYQzurK9jTB9z3yXYCBWgrUReFgPC2kcHXkZlmY895f7dBjdlArhz6RLDUfrBcZFk55rAiG8riZpMVcRP9FzUckLYRzF2RrWQl0Loa3o/NLBlWjmEpvuTDRlaXCT2nYQtNEG0bAo5Z+b6OVErUGo76EcPayJVDnwjGHOxYMW0O10oaaAclo89DB1t2D9sQeoG24/4YVjwH72e/H46u0HM/g9YkaHtYKxMZbGR1rUigWIWYw2BJ3yBzW4C0jSWws9b+Yg+WvdY7mlXYFpArhz7Qzv5w/+66h/baB9uxxNzPYMDYDjXm/myzziG4oW2k4/qTaFfD20tvtJMu235XwVKhHRFrrWp1u5/+Wg+UC/rnhWM3ldVH2BPVpvi0kSuHPtCRYVIqsFx31Lt1hgPSmi06OiiZ1eJwbVYXl4tUG47qQTbBxANopxWrXT8cD7BEXfnKxx9DWyAFvUQ7MbJQTYsFzyHIBpSLbhW2FQrR+/tgKVcONx3CzdIGvA1dU+QOHWM35zrY5RJsVeZ2VhfbnIOVlgcBWgm8+JLFgLSVFMrQHGzEHIyBQsGeIdD5vup3JSBsCCg/pxY15knbAZ9W0q6RUkauHPpAOIg44BUWaVeEtmkr/cIlE3LTrfQlcjkZoG0l6SqgdpU32IlruIcutSWGdlwj2DwQYNhS8kEhMAc79JtZQVGCdqHdyuc06GV1aQZznbAhoLwnwms9kHsONx/C1l5LOShaACZAgLa4SRv59RZrBIKUTKEg6tZe2BKzwnU72LUmvc8OD0s7SyY0BxuUDBa9xM611g/mhg0B9fiS9xn0fgD12Ik2cuXQB8LVxb4FoLXIHQFvmznXIeWg3aJDQkJJNzXQ/WzRb7Y8h4BkHVSeQ1xAWrtFR5hW0qdkgvuhgIh2AZn7Gc7g0zY2goaAtpcYTsdtzyGnlW4adMYcdGmlMOVjNcAXyPTRb9FhVtAZ+lZ3p/cD+s3SVig4Zaoh3G/HThX2SlrJVvKBP4KNXl3hwL2NYK5/LrwPt6jSRsua9vUhp5VuKoSLWVqeg9KL1NFt1AJfH+U5gHbRTyeHazP33ZaHFfZ+7FT+rrQmNakG92Cq9t8HLXiJTtRzsph8YCOY25GZppx80On95AHpmw7hitMBZe4w3CqgUHAPJLfd8A10hVLwsB9wlahmXCbcb0fbg4NOWmmgVLDSADEcv1IVenTSSra9RH36LY6SsWcIDJYLqj3TVsP7sYE1Uw4isl9EviQiJ0XkhIh8n/f9NhH5ooi87H1uXat7DCNMBWhnK4WzocBv0WGv4ZuVoDqdm81G8K0tWH0PTpmHDuwO7XUI575rx6/A59KD9J6X/absAQUVkFukZkGJen+3YsxExJdUjZlQRX9LweUB6Vg0gH9pjHkAeBPwERF5APgh4C+NMfcAf+n9fV0gTGe0N7RyzCGw22xbrO3NpjtGh9VthcMNuemKcwjWm4DNdfCLr8Rr0aHsYYVoJdAVSiZkCWh7ieGizUEbHlbIEFBfa8LeT04rJcIYM2aMecb7eQ44BewFPgB80vtnnwS+dU1uMAKtmEMhVOegZFGGA9JgwXOIqdXQHqMQEkqqXHqc1a2cahrm67WtVQJjiIgrWJWtybBVD3peYji7DvS9xFirW7uS3Oqecz/D3k9OK/UAETkIvA54AthtjBnzfnUF2L1W9xVG57m/ytlKRG82dR56hWei7zmEg5QDJeU5xAQp9eew0nPQbJUSFhhgg5IxLUMGAly3kvAOB1rBgpfofXb2JVIeYxW89YLYMSptYc2Vg4hsAH4P+H5jzGzwd8bdiZG7UUQ+JCJHROTI9evXV+FOOy0lbcEazszwx9DmoVdkElkoyAkXFanPwfsMZ42pWmKBnkGg3yolLDDA7xtkL2vMludg08NyQsq4Tcno1oOEg+pWPN0VXmIh78qaBBEp4yqGTxljPut9fVVEbvd+fztwLer/GmM+Zox51Bjz6M6dO1flfsOZPu2AtG4R3EoXV9fqDp6BDUHBqhxz6KAabGQrubDdxsTGGGFaCSx4DiElrZ0lE86uA30v0R/E94BsxE2csCGg7SV6n2EFlNNKMRD3rf04cMoY8/OBX30B+C7v5+8CPr/a9xaHeK5bS2C4sOo5hK9vw3PoCEgrb4TYNib2OpoOKPPEUV6itucQrvzVpt+isuu039f4jqYWDQFlL9GJ4BAHy7r0mw2spefwVuA7gHeKyFHvz3uAnwS+QUReBt7l/X1doIPOsFUhLfY8h7DgtrPZTIc1aSP7w18H303X5okjPQd1SiaogLQ9LIAoL1E3gSIIbS8xbs+pB6RD8SV3DIsUYrm47lNZS2s1sDHmK6ykRIP4+tW8l17hOCupgErRFq3UxoDySxQ8TMi9vr7nEA5I+y50uDguy/XBbspvVEsF0C94DNMZutZkuEJan34DOmhKK/UgAS9RRL+mJSq+5K51WeH6nfta20u0gTUPSN9ICFsAhYJQKeoJpdg6B6vZSjY6y3bWCDgGGkqH8axWym/Uc9KzJmMKHtWL4Np/1/YcwoIbLHgOoT1hI5hrQplpg9peovdZsMgI2ECuHPpAu86h/Z2m8I6yJtXz6yNyukG5MIq4uIa9lF9tSgY6rXrQpxA76Dfl5IMVSlq5WDAyHbfU9hJ1xohK0rBsCCh7iWHGwR8j9xxuIoQP7QDdM20jeWh1gbFSILWoMfW4RhvaRT9OhBYdtJHyG1FdrEVnRNYIqBsCducQZRGre4mtMdrfqQfuiTYE1LxE77ODas1TWW8exGcT2X6JtAVGe4BCQago8vVxCg4Uue4YJa0dVA9TY6DpOURYk9rFgnTWUYCNbKX2d9rtWNpW9+qld2vHl6KMysFSIS+Cu5nQLoILWfYW3fTBUpF609BUs8RW5nSDL5SUW4CsgsVqu1gw3HgPbAek9QwN6KwHKRdFNZgbxRxpZxNFeg4W2ltYjcNFUIh5ncNNhnARHOBa3WoboVOyqrcFD20EsOT9RFjd2qmB4Upvq3y9pTl05r4rnwQXuL6IuJSMmgfnftj1TtxPq00Qsez9RKSoa8/BBnLl0AfCJ8GBzxPrbraVnoN+lkw4nVSzWVo0XWLnONVw8ZV2UJ3QOoOm5xBBjVnwHAqhtR5QVEBRtFK7RYfyWq9IAtH3Eok0BHTX2nYChTZy5dAH2h0iQ9yhNtVgVShFeQ52M670s5Vc2Mz0CZ+/PKgeN3E/wmmgtabT4tk1hgivtRvMtbjWq+Al6gvW6LRl6z3Tclrp5kG0paRn7YWPIQX93u+R1qSiJRZdq2Gp9UQ4vVE9HXdlJhHY4NI7K5g1Y1gd8SULXmKw86stD6sjzqd9nkMEraQXh4vJQsw9h5sPtl7UuIA0KMccQt9pFi6FDzYBe5k+HW2W1Qv5Vl4f7J0XvmIMxSyZsCGg6Tk4UVb9alnd6o33bL6v7mc4+aDhGBpK/ZtsIFcOfSAy5mCdVtLPuY4KSNvtt6N/ZgTYbZ8Rfk7lYoFiQdS8k+igum6fq3DcBJQ9h6gECkv9m2xlCEJSQNqi9+Pta63mfjbQtbeSiOzCbZK3B1gCngeOGGPW76wsISpbSTXTJzIfWt/FDQekB8oFFhb0DlSHzs0M+gIjLFjV0xtD31mJzVj0HMLnFICu5xCZQGGp82sQNs6pthk3CZ9mFxyjWncYrqgMo45Y5SAi78A9v3kb8CzuuQqDuMd23iUivwv8XPiAnpsZcdkZ2u4nEZ6DTR5as+I0MYPFMnVVbThqzf3CZyEEx9CAiVhs/RTKiJqWcoH5qo4hkBQ30c7hD49RUz4xL7jWJc9L1GYEbMaXbCDJc3gP8L3GmPPhX4hICXgv8A24h/XcEogrgtPeCGFuEnSt7g5ayYKCi6JL9M/abiPYg99/ZlnH6Mj0UfROkjwHq2tdKjIxX1O5flzjPbBRId3+TpPKhfZaBDGoWK0e6f1oe4kWkKQcfs4YcyXqF8aYBvA5K3e0jhEfHLN5noNyBgtR2UqrRZfY63IZpALUlAP2PIcoSsaGhxVV52AzbqKeceV9RsUctLzEKPpNs89VZNzEjzmsY88hKSB9VET+QkS+R0S2rNYNrWdEH9pRoNbQOVKwXRjVhrY1GT5XGHTTQKPiJpWibg/+uJRi0C20i/IcbAYprTUoDGCwVLRrCCgXwYVPgnPHKGIM1Js69SBO1FqrZiEmFYbemMphL/AzwNuAF0Xk8yLyQREZWp1bW3+ITj/UW+RV6UtkiObSLQoM7R78kRlRFnrwRwWkVytIqYGotbZSDR+RQGH7jBN3DMXC0NB3A4pdU5M83fVMK8UqB2NM0xjzZ8aYfwTsBz4BfAA4KyKfWq0bXE+IKlLT3NCRL5GlYG4QvkWs4v3EXMJGRahdzyGuB5V24z17FCKh41rBXwd7glu/ud9q1M3EdQ2w6OlaOGRLGz3VORhjasBJ4BQwC7zK5k2tV8SdBQs6h+VEBvgsBKQLoVX3e/CruOkRcRNQLrSLatmt3oPfdMYcbMzBYkA6fFwreO2u1avh24NoN/czEKngQNdg6kzvVpxDS26svD7cuLQSIrJfRP61iDwD/KH3799vjHlkVe5unSGuCA6UPIcI2VwuCgXRrS6Oap8BOlZ3VJMxf4xVaQtu2XPQ7ksUvj7ornVnUF2vBXxUjAz0m/tF1eWAMtUa+s6G5xDV3G8900pJdQ5fw407/A5uSuvTq3ZX6xRR2Uq6x2x2utAuX69ZhxDdPgNcobRR4foQs9nU24KvvD4oxxxsVhdHvkv6ZyGElXR7rZsMV7rWwCZfP2IOoBubCfc98q8PuhlRUXG4uWXtwtCV14f17TkkvR0/BPyN0ToM9iZAIv+p6DlECW+7G0GPuop6RuDHNeyl/Nrph9NZXazHEUdRYxbOEYgQeuDSb1krc6NiZKCb1eVEphRb8LAiMtOuz1VVru9EyY1WoskNqByMMX8NICKHgH8OHAz+e2PM+23f3HqD7ZhDVKYPaFMynRtBM+gdPwe9YsEoek87DTQymGvBcwjGf9SzcCIqpDXpt6gYGWh7iRHva2l1aCWtGoTImMONTCsF8Dng48AfAKum5kTkm4FfAIrArxljfnK1xo5D9GE/NjyHzmCuppveuRE0PQf3M4qH1j+w3Z7nEBXM1Uz5jWo7XigIlaLu+chRCg50AvdxnIJqJXnEOlSs0Eorv9P0dONOs4Mbl1bysWyM+UXrdxKAiBSBX8Jtz3EReEpEvmCMObma9xFGVOM9zZba7Z5BK7/XLr6KDfCpeA7RRPRgqcj0Yj3z9d1BotNxQdvq7qRL1DJ9YtZaszVEVDBXtwV8NIWo3YMqPoHCZuBe81z1G7MIrhfl8Asi8mPAnwMtEs4Y84y1u4LHgNPGmFEAEfkMbo3FGiuHiB4pFiwxm8VXiQE+jTESPAeblp5+Kmv0GH6mTzH8EPu9fuxzUsyIilrrVXlfiyxZTKBQP1eduJoWu/UgoEeN2UAvyuG1wHcA76RNKxnv77awF7gQ+PtF4I3BfyAiHwI+BHDgwAGLt9JGXG95UPIcYmoENPu8hA82ATtxk6hW0TYPLLJSBBf6zn9OtYbDUCVb/6ak2IxqGmhEUB10hFKUJw0uDTq1qNPcz1Vw0UF125Xk+mdIh7MQ1/dpcL0oh78D3OkVwq0bGGM+BnwM4NFHH12VjKr2sYjt7zQPaEkK8Gml1cVVg4LOZoudg2rMIYou0T67OLpltztGM7tyiOrPjn6RWlzygUaBVzw1pnx0rsUiuHZBZecY/kltpWK2M9GiUuDdMda3cuhl1s8DWyzfRxiXcFt2+NjnfbemiD7sRz/rIMpi1cx9j0ozBWXvJ/S9dhFc+Pp+D361DJOI71qBe821jogvqSYfxAlW68kHes8o1nNQ9dZXfu/Xg2ic1BbFOIAuI2ADvXgOW4AXROQpVsYcbKayPgXc46XRXgI+CPx9i+P1hOQUSs3Ge53CWy+tLuIAGAv9oaIsVk3BHd5ooNznP6b1BOi0WY4TGEOqhoChICvtvzaFaKdRJOh7DquSeh0RkAadepCozrL+GDdknUMAP2b9LkIwxjRE5J8Bf4abyvoJY8yJ1b6PMKKKWSpFRSsmrh2BauZEgjWpYol1FncBDBT1evBHUQ2gX4Vts/gqTmAMloss1nQoxLh0XFDyHJKylTR7gYWu39pzKgZZHA2qmYWIN4a9rC4b6KocjDFfXo0biRj3j4E/Xoux4xDlRhcKQkUpmyjJxdUUelEHwIBu2/HOg+0VT2qL1g3KHUc7LdaKpoeVsNaTC/bSQK14DqHvBxWb1kUddVoqFigpHeMZ87oGWplYVECKSRo2kC3ScoshKusA9OiM1aiQjnTTLRTkxFJXSlRAlPOhWsFMUk8fTaHUyUNrxTSieutpNq2Lza4raR6AFbPWShXMSdQYWI7DKRp9NpArhz7gH9ASZY2pWhgRGSyqvetD37WpMXtxE90eVJ0pmuDOQ5frjguE2rMmtU9qi0opBt2Cx7iUX63nFBlfUqpgjqKKIdCgUDGDL1wbs95ppVw59IHkXjJ61mR4tw0G0uo0xghvhHbOtd2W3aBnicV7DhbbjFjgocNQza+P8BL9w3g0W6VEnQ8CSoLVifccVDMEY95XjecU1T7DH+OGVg4i8lYR+aKIvCQioyJyVkRGV+Pm1hvam6HTc9C0uuNiAjo8cafAAL3MidicbuUMk9iYg+ZJbatRSR6ZymovmOsfxqMbVI+LYekYG/GZafb6mVnxEiOU6I1eIf1x4F8ATwPrdyargGZEKivoLXJcQU7wHOkNA9l78EcKVjUFFyMwSrppoLECQys10FgWGDGZPm4RnL1gLujVISR5uqBVGBq31jr0W1I/M1D2sCLqHLTSu22gF0kzY4z5E+t3cgOgxR1aSklLaqkAelWtNmsEkoLqoJgGGuP9qFWSR7WKDrTPyIp2QeXK7wdLRZqOod50KGeszI1qC+GPYfP8EU3PISqBwh/DbtGmniEQVR/lj7GeaaVelMOXRORngM+yeo331iXalElUQFrzRY2pYNbgPxM5XHttnLV78FunlaJiDjYqc0Oj+G05lurNzMohSbDaOrkQtNtbJBU82jTINI0Z99NWlqMt9KIc/IZ3jwa+M9htvLcuYRIsgPlqdos1KR8alHKuic700asRiBEYqrUU0YV02lXYNlN+Y/sSBeiMTYPlzONENY/V9hxspvzGKjilzq/tPR2TraR4KFIYmnU5NtBLEdw7VuNGbgQ4TtyLpOQ5eJ9xbrpK19SYTJ+KFq2U0FsJLNc5KJ8jYLNCOraATLkJYqQhoOQ5xGXhtD1du57D9FL2XqBRtSDu9fWP8YxKNLkhaSUR+YfGmN8UkR+I+r0x5uft3db6RDPRPbRXXTyo+KIa05l6CKsXN1FLZY34XrUHP50WsZ8GqtN6woPlQGjUWg8qFVXGe7p6xkxizEE1aywuQ1CDyo1nHGpNB8cxHRmQ6wFJnsOI97lxNW7kRkBUy27Q9BySUwN1zlswSEQG80C5yMxS9pPanBg3XdMSi2rZ7Y6h29MnLJVUe/DHFjzqtoCP8xxUaFDvMzYgbdFz0Cp4jCvk0+zfFB9zaLeUGSxkbCljAbHKwRjz373Pf7d6t7O+ES/4tASG+xFVNQur4DlYbOOsee5v1AlnoOemx6UUg553EudhDaoaAnH0W5Hx+eyUTHw1vG5mWuRaKyUfxLXP8Hum6VZhr/w+WDfjGwXrCbHpECLyf4vItoTfv1NE3mvnttYn4k++0sq5dtFZ56Ac4IsMSNvuVaM5B4gS3QNKleRxcwD92ExsYzwlRR2ZyqqWBhpXI7AK76uWIeB9RhsC2s/JXrGgDSTRSseBPxCRZeAZ4DowCNwDPAz8BfAfbd/gekKSBbDcaGZuR93yTMI9WDQFBvHWpKabHt5umtlKRNQgQKDQLuPpXXFN8fwxVE/MC32vWUBmkqxui8aManZdXKsUpXUwMXvOHUPPS4xaB82eZjaQRCt9Hvi8iNwDvBW4HZgFfhP4kDFmaXVucf0gLltpoFzEGKg3DZVSeuXQjMuGUi3IibYmtYuKwk3GdHvwR1t6wZbaWQ5oaTdK6/ydetuGOFpJqadP1HPS8xzcz/gGhTpziK2QVjHI3M84z0FnHeKbB8KN6TkAYIx5GXh5Fe5l3cOJEXzB7AxfQKW7vi+U7HkOxLVUUBJ6zZjMDM0e/I4xHc8I9Lhufw7RQW8drju+G6imlxhXDa/URTi2yaJuB964GJljoOEYysX0yiGO8gE96ipewemee66NvCtrH4gtg1fK6/Zbgofbc2jmvse5uFoudDPRTddSQMmbLavwjlPSoCkwosfQPIzHcYg0ibU8h7gmi/553noB6eh1AAVDIGGttYoF4wv51jetlCuHPhDbPqOkQwU0Y2IavtWtlzceH5DOekCL///DCg70Go05cdaklsBwEuagxHU34wwBxcN4IJ6SqTdNa55pEef9gLsntBRQXNYYZH9OiWutSL/Fxflg/dJKuXLoA3EBvkEl7tCPaURTJloBuLiurFqC1f202dyv6ZgYwa3kwfmZRHFBSoVzNdrJByu/99+lpZpWpk8ntOIaTqJg1aKu4ug9nfc1rg2/P4bdA4tucM9BRO4Vkb8Ukee9vz8oIv+3/Vtbf2g60Yvc3tA6QinSxVU6PjI2IK3M19uswm6a6IrSdraSjtCLpt906kHiBGvZo2S0WqUk029KHlasYNVJA42raYHsHXLjYmTgZ3XZDKorng9iAb14Dr8K/DBQBzDGHAM+aPOm1iscE21haBUuxZ0XAX7mhAYPbWKzcCC795NIK6k1fIvzHHQ2WxIPrUWNtdc6mpJRq5BO8HQzew4Jc9AyBGJjDlrGTFLMQTG+lEQr1RQ8URvoRTkMG2OeDH2n0zT/BkM3WknLTY/zTrSs7lKEWa8tWCMteyUON86Da6cGZvXgVkHoOfHPSasdS1LaMuhRiHGZY1rHhFpNPkjYc2p1Dl09hxs35jAuInfhn5wo8u3AWJZBReRnROQFETkmIr8vIlsCv/thETktIi+KyDdlGUcbcVaMVuFSopuuJDCaMU2+tARrXK0GKGcrJdBK2QWG+2k1bhKTjgu+ctCxWEsxWTigl0AR5YkOqnV+jQ6SrYbnoEYhJjQPhBs45gB8BPjvwP0icgn4fuCfZBz3i8BrjDEPAi/h0laIyAO4lNWrgW8GfllE1k3TkTjucKiiFOBbBYvVDeZ2fq9HK7mfsdakkpueTI1pCYyoMXQs4qYTTb2BXkvtphOtgAa1PKxuVrfN1Gul5n6Jxoxar674ZwQ3sHIwxowaY94F7ATuN8a8zRhzLsugxpg/N8b41NRhYJ/38weAzxhjqsaYs8Bp4LEsY2mi6SRzh2rKIYb/tOo5KAcpY4O5NrOV1OpNVkNgRKfjAgyVdQKhccphQCv1OtHT1QxI2/MS4w4sAr3W5vHNA2/c3koAhM9z8DjMGeBpY8xRhXv4x8Bvez/vxVUWPi5630Xd14eADwEcOHBA4Ta6o+nEuOlKhUtxue/gKqDpxeydNOPmUNGOOUS1WVbsS2SVVuriwWn04I+Lm4AerRSrHLQoxC7PaXJBq91L5/fa2XV2Cx4hulHkjZ+t9CjwYVwhvRf4P3Epn18VkY/G/ScR+QsReT7izwcC/+ZHcIPbn+r3xo0xHzPGPGqMeXTnzp39/vdUaDjRDd1a2UoZc9Pjct/9MbQC0smtJ3SyldYig0WrLXiSwPDHyJph0ozJuAJdL9Gm55Bcl6NDITYcQzEpgUIrQzBmDhpdfpuOE2mQiei1BbeBXs6Q3gc8YoyZBxCRHwP+CPg64Gngp6P+k0dFxUJEvht4L/D1pl2WewnYHxr7Ug/3uCqoNw3lJM/BYsxBLYMlLtNHTbC6n/ECw2YRnM4ckui9YKFdlh78SZ7HYEnn4KU4BaQVc0hO+dVScE7kntOKOSQW8il1+W04hlJM/yctqtUGepnxLqAa+Hsd2O11Za1G/5dkiMg3Ax8F3m+MWQz86gvAB0VkQEQO4bYHD6fRrhkaMS+JVuFS17YNaqms8bUaVoO5Wm66E+1dtTu/ZlXS7meyAspusdrMVjLGrJrnYDMNtNFcnSaLyc8p2xiNZvSec8fQO9pWG714Dp8CnhCRz3t/fx/waREZAU6mHPe/AgPAF70YxmFjzIeNMSdE5He86zaAjxhj1o1arSdYABqFS0ltG7Q8h2Yzjq/X6VWT2OVSqy+RMZQjtIPWMZ7dguqg42HFxRw0rMlu1fag2JfIYhqo23XVHq0Ud4AX6LXFiVPSoLcnbKCXlt3/QUT+FHiL99WHjTFHvJ//QZpBjTF3J/zuJ4CfSHNd22g0nUihBDrCu1vbBpUgZbfqYqtN64oq1aBxMQd3DEXlkBjMza5E4+LZFYVT+RpesUYc5QMaXqL7Gd+0zl5QXSuBIq7TMuhRVw3HiVRw/hjrlVbqxXPAGPOUiLyCexIcInLAGHPe6p2tQ8S5uKBDBSSX8uscbhJPNXil/Jn5evczzppsegG+LBxuXNwEXOGtVqthWYnGvUsayqHV/t1iEVy7yrvzdz5dkvV9rTejg7mlglAQ27SSDnWVJDfWM63US+O994vIy8BZ4Mve55/YvrH1iHrCwSIaFaF+VkRUe4vBchHHuEHxLIhPb9QSeu7/t1kRmsTXa3gOvtUd1zwQdOYQp+AqRb05RAnWclEQDcHapS8R6AjvKCrXpRCzGwLdzh+B7F6iG5COFrXrOVupF/PtPwBvAl4yxhwC3sXKWoRbBkkW72C5mDmVteYJ/igFZDsQ2j7PVmcOUSfiaVpi8QG+7JvNV8CVYmc2klZb8EYz3tAYKOt5DlEKSERUCrySW6XorHW9GZ3KCjrUVcPfczEGGSgEpGNSWUEvNmMDvSiHujFmAiiISMEY8yXc2odbDklCSaOldr3pUCkWYpqlZX9RjTGxpfyFgqhYrHXv/w9EClYtBeTEHseq0bah7nlwkQqurDOHesIcKkU3vz7LYTwtzyHB080uuL3nZDFgHFcj4I+htdbliLPf1TyHRFpp/XoOvcQcpkVkA/DXwKdE5BqwYPe21ifqjsNIJfqRuYVL2QVrrDWp8KLWEoSeP4bVzaYU4POVaBQ0Anz+c0r24LLPIS5I2Sq0azgMVdLVUiRVLwPeOdIZn1PDFdyJlExmqzupRiA7rZSs4HS8xKZjWu9+1BjjjeydD2ygF8/hA8Ai8C+APwXO4Bav3XJoNJNSWRU2W9OhHCO4NVxcX6ANxCkHDcHa8AWrPVqp1kjyHLJbYqsxh2rCHILKIS38/xs3hobnkLgOSlldtinEatJaK8VN6jFV3v4Y6zVbqRfl8KPGGMcY0zDGfNIY84vAD9q+sfWIaqPZyvQIQyOVNcma1DinupvA0MicqDcdRKIDoVpuer0ZnfvujqEzB/daSede2Fvr1hgZTrTraghoGTNd31eNgLS9mEMihahIjUVVeftjrNc6h16UwzdEfPdu7Ru5EbBUb8a6+QMKtFKtYRLokuwWa0s5JAilzNakJ7ij4iZavY9c+i2JGtOhGqxak834tdbI4ff/70CsMaNAgybFfhTeV2MM9UTBmv1UvnrCntAKSNcb3aix9akcYmMOIvJPgH8K3CkixwK/2gh81faNrUcs1eL76Qwq5NcnbbZBBYu1m+dQURKsAwlWPWTncKtJwVyFGoF6IyHjqqhHjW0eKkf+LtjTJ/X1E7wf9/vs72u1kRD7UbC63TqJtqKJGkMtvmTRc1huNGPlxnrurZQUkP40bj3DfwJ+KPD9nDFm0updrVMs15sMxSzyULnIUsZUVpdqiC/ugmxCqdqNVlI4irTWiI+baGw2Y4wXkLZniVV78hzsrbUvcLMoOV/JJ8WX5paznfZbazgJykfP+0kSrPPVbHOoJ6aP6xgCy/V4OlojbdkWkmilIjCLexLcXOAPIrLN/q2tLxhjPFopPsCX9TwHN/sj+vo+h1/PYk02kqmGgWJ2KyZZwWWnZJqOm44br+AU5pBANbSb+2Wl3xwqCQIDMioHf60TsmRsBqQ1+hIteQpuMGkOmancHtJxM46xVGsmz8GrJF9vSPIcnsY7N5rOkyoMcKeVO1qnqDfdvPM4z2GwVKTpmMRAYzcs1poMx8Q0/E2YpUK65gU4kwRrVktsud6MVz4KZ0YstSziBDc942b261WiBKtWPchyrRlrdVcUqKuWlxhRbwJ6lEzXoHqGOfgB87g9p2EILNebVErRMbL2WmellRwG42KVAQox7p1eK8QqB68aOocHnzJKijmA+7KlVQ4LtQZbhyuRv/Ov6Rc3pcFyvRsPXWBiPpvQW6g1GRmIfq1aGyGDwFiouusQP0Z2i3ix2qRYkMTnlFVgzFcbbIiZg0Yqq39/cYZAuSit6uC0SDJmNI5s9ZV0Ml+fba2T1sEfI0tA2nEMtYYTTysFlOgNoxyCEJH34x7uA/BXxpg/tHdL6xOzy+7hK5tigoit0+DqDhsH040xX22wf9tw5O98WimLwPA55o2DSYI1m9BbqDbYMNB9I6SF79mMJIxRa2Zr+DZfbTBSKcb+/6wplMYYT4l2sybTr8VCl+dUKhYyn3C2UG1w26bol711FkIWL7HWA62UUTksVBuxzwiyeyf+/cUquKASTSk3bKGriSsiPwl8H+4ZCyeB7xOR/2j7xtYbprzzm7fEZZgonAa3UG2wIaYCW4NW8gXrxoH4LBmNzTYcMwcNa9IXenHWnkZcwxUYSdZkthTKasOh6ZjYMTRSWduGQPRal4sF6hnac4BndccaGtnn0I45JFGIWT24ZmzXA3eMbAposeauw1CsgtNJcLCBXjyH9wAPG2McABH5JPAs8G9s3th6w/Si6zlsHYmmfTSOCl2oxlMyvueQhVaa87yfWM9Boahovtpg39Zo70djI7Qt4njvxx0j/TGeC7VuyiHbc5rvouA0zqn2lUPcGOWiZEpuAJhfjqdkNALSs95RqVuGovecxvu60I1WyjiGf9zrlhi6WKsdiw30So5vCfy82cJ9rHtMt17UGFop4yI7jmGhFk/JlBV46Pnl7oI1qyXmKrgYKkOhB383waqhgOYTlDRkrwdpKbg4L1EhlXVu2aXG4hq+lQqFzDGHJL5eY619g2zzcJyn6zYozEKPdTcEsu0JX27E17To1P7YQC+ew38CnhWRL+FmLX0dK+sebglMLXi0UowFkLX6d2apjjEJ1y9mp5Xmqg0GSoXEvkRZrFVjDFOLtdg5tHvwZ7fENsXQJRp0xvRiLTYxALLXg7TmECMwdDyHeiylBG5jxCzXrzaaVBtOrHLQXOtYKjfwnNIeHjWzVOeO7SOxvx8oZUtR9+cQq+CU6mZsIKlC+peATxtjfktE/gp4g/erHzTGXFmNm1tPuDyzRKVYYHsMrZT1JLXx+SoAOzYORP6+RStl2NDjc1V2bIi+PrTpkrTB3Plqg2rDYceGJMGazeq+3npOcVRD9jTQ8bkq9+zaGPv7rNlK1+e8OcQ8p5YhkGEOrpJOUA6FbAHp8XnXWNoZ876C31Imm9VdLkrX9O5q3SFBlydifK7Kzm57IsMcZhZ7U3A3Gq30EvCzInIOtyPrBWPMF25FxQBwaWqJ27cMRrYnhqDnkO5F8gVG3ItaLLind2Xhia/NVbts5iImw2lzvsDoRQGlxfhcjZFKMT7onXEdjDGMz9dilY8/RqY5eAoubi3KCp7D1dkqt22OT38pFQXHkPrMiNb7mvQ+lbIph8l51wuNzRrLWMG8WGuwUGsmr3W5mMlzmPAYhzhPVKsK2wZilYMx5heMMW8G3g5MAJ8QkRdE5MdE5N5Vu8N1gsvTS+zdMhT7+6w5/NdbAiOekikXsmWYXJtbZleXzQzZFVyycshGNVyfr8Z6V5Cd3ptdalBrOl2syWyVud2UqF9hnoVCvDq7zO6EnOpyi6ZMN49rs8sA7EoYo1IqZJrD5Zkl9vSw59K+r+NznveTsNaVYiGTBzc2vcRQuRjrxWl1+bWBrkSdMeYVY8xPGWNeB/w94FuBU7ZvbD3BGMMrE4sciKlBgOzu4aXpJQBu2xy/GcpFyfSiXp2tsmtTL8oh3RhjM+4cdsfkvoN/Zm76jXBlZilR6GWNOYzNunPYlTCHrLnvYzNLbB4qx2ZTZQ1IN5oO4/NVdiesta+AGimNjau+ckgcI1sMyzXIktcBbL+v2bK6XAU3mOD93Ji0EgAiUhKR94nIp3Ab8b0IfJvG4CLyL0XEiMgO7+8iIr8oIqdF5JiIPKIxTlZcn6sysVDj/tvieeisVa1nry+wa+NAYlpduVRI/aJOLdTc4Nu2pOBbNhf37PgCInDH9mQlmsXqPju+yMEdSdfPlkJ5btw95PBQUpAyY/uMs+MLHNwRf30RoVxMHzC+OLWEY4hNKYZAxX3KMc6OLzJULlqzuo0xXJ5eZk+CsZQ10+fchLfWCWtRLqbfc+DS0cnezw1IK4nIN4jIJ4CLwPcCfwTcZYz5oDHm81kHFpH9wDcC5wNfvxu4x/vzIeBXso6jgVNX5gC4//ZNsf9GQ7AmCQxw0w/T0kqj4/MA3LUrQeiVs7m458YX2LN5KLG+IAtfP7dcZ3y+yqEdGxKvD+nXYdRTDokKKGPu+7nxRe7sstblDIL19DV/reOfk5/dk1YBjY7Pc2jHSGwMDrIJ1sszyyzVm9yR8Jyy0kqj4wtUioVE4e3OId2eM8Ywen2Bg0mGxjrOVkryHH4Y+BrwKmPM+40xnzbGaJ4d/Z+Bj9Ju7gfukaS/blwcBraIyO2KY6bC85dmAHr0HPpf5KZjeOnqHHftjN/MAJUMtNKZa+7SJY2RVbCeub6QaIW5Y6Rv0XHmum/pxQvuwYxUw5lrC+zYMJCYBpol932h2uDS9FKiwACfr0+pHK67yuHuBOVQbmW/pTQ2ri9w585uCk5SC9YXr8wC8KqEPZf5fb02z4Htw7G1IJCNGrs0vcRctcH9t/cwh3VY55AUkH6nMebXjDFT2oOKyAeAS8aY50K/2gtcCPz9ovfdmuLw6AT37t4Qm78P2V7UU2OzzC43eOzQ1sR/V8pgiR27NM1IpZhINWTxfuaW65wcm+V1B7Yk/rssVvdTZycBeN2B+OfUphrSCe+nzk3ySLc5ZPB+jrzibqduzymLUDp5eZbdmwZiC6/860M65XB9rsr5yUVevSe5HjbLHE6Nud76vUnKIUMVtuMYjrwyxev2b0n8d5UMleQveHNIMiqzMg42W32nqxzpASLyFyLyfMSfD+C23vjRjNf/kIgcEZEj169f17npCNQaDk+dm+Qtd+1I/HdZYg6Pn5kA4M13Jo9RLkpqWunxMxO84dC2RCupkiFz4si5KZqO4U13bk/8d1liDodHJ7hzx0hiADHLKWqXppc4P7nY2xxS9uA/PDpBqSC8/o5kQ6BSLFBr9H99YwyPj07w2KHkOfjHVqZ5TodHvff1ruQxsng/xy5Os3/bUGyxI2TLEHzhyhzTi/Wua52F3jt2cZqCwH23xdPRWVLgjTF8/c9/mV/5qzOp7q8beurKmgbGmHdFfS8irwUOAc95Efx9wDMi8hhwCdgf+Of7vO+irv8x4GMAjz76qDX1efTCNMt1p+tGyNIu4HFP6CXlpUP6F/Xa7DJnri/wdx/dn/jvyhmqsA+PTlApFngkwaoHqJSKqQRGo+nw5NlJ3vvQni7Xb3fH7ReHz/Qu9MDN9Ik72Ch2jNEJHtq/JbFlgz9Gmud05voC1+eqvKXLHLK0gH98dIINAyVesyde6PljpJmD4xiePDvJO+/fnfjvsnjrvoJ7U7fnlCEd9/DZSV69Z3Nikkmx4CYfpJnDmevzjF5fSPQQs8Ca5xAHY8xxY8wuY8xBY8xBXOroEa+47gvAd3pZS28CZowxY6t9j0F89fQ4BaGrhSEi7vnFfW4GX+h1e0kh/WZ7vEdLr5Vfn1JgPLx/C0Mx1aytMQrpsnBOjs0yV230MIf0WTiHRyfYOlzmvt3xNAC0g7n9rsV8tcGxizO86c7uBymWi5LOC/XXugeLGNrnZfeDw6MTPHZoW9eWFW7qdf/Xf/naPFOL9a7PqW0I9G91Pz46wYFtw4m1S9Cmxvr1EpfrTY5emO5prdPWzXz1tLvWb7s7mXFIi1VXDl3wx8AocBr4VeCfru3tuHTMa/Zu7kk7p2nl/PzlWearja6bGbwDWlLQSo+fmWDjYKknjhj6b9swu1zn+UszVhVcy9I7lLzZ2hZxiuc0OsEbD21PzMAJjtGv4DtybpKmY7rSh/4YqZ7TmQlu3zyYmE4MbVqpX0Pg6uwyo9cXelRw6ebwxFlvrbvsibT9xnzPpJc5VFLWgxy9ME2t4fDGLvQe+Ps6jXIYZ9/WIQ50Weu0WHPl4HkQ497PxhjzEWPMXcaY1xpjjqzlvS3WGjx7YaqrteojTYGXH2/othHAtVjTWpNvPLQ9Md4A6WmlI+cmcQy9CYxSuhPIHj8zwV07RxKL06Dt/fT7nC5MLnJxaqkvgdGvYD08Okm52D3eAKTyQh3HjTe8+c7tXXtjVVIGpFvxhh4UXJo5+GPs3TLEvq3drXro34M7dWWWmaV6T/s67RiHRycQgTd0MWYgXaJJ01vrt3aJhWbBmiuH9Ywj56aoN03XYLSPNFksXzszzr27NyT2qPFRSfESXZ5e4pWJxR43gt+2ob8xHj/TW7zBHSMd9fbUuameFKiIUCr0n2HyhJcJ1av3AymeU4/Umz9GvwrupWtzTC7Uelprv5FjGqG3cbDEA13iDZDufXUcw+HRSd5457auCs7vQdWvgvMNst6s+nRe4tfOTPDA7Zt6YhwqKWopjl+aYW65wVvu7s1wTYNcOSTgq2fGKReFNxzsLvTA9xx63wy1hsORc1M9UUqQLm+8nQll00qa5HUHtvR0uE4aquGER731ohzSjnF4dIJtIxXuTejG6qOUQmDM+dRbj3NII1gf7zGgDunjJo+fmeCNXbLefKQpIDs5NsvkQq0nHr2cMuPq8Ogkd2wfTix+a42RIvttodrg2fNTvO2e3ozKNAcvffX0OEDPhmsa5MohAY+fmeB1+7fGdgANo9+Yw7GL0yzVmz3TVmncz8e9IGtSrrWPNEeRzizVOXG5d6GXSsGN9k69pR7DE3rd4g3+9aE/gdFrqq+PNE3rHj8zwf5tQ4m1LK3rp6CVxmaWODfRPdXXR5rsOl/o9aQcCv0ruKZjePLsRM8GWSWFN/3kuUnqTdNzoDjNvv7amXHu272xJ8YhLXLlEIOZRdfS61VwQ/+ew+NnXF6yF/cW0luTvQRZIZ3n8NRZP97Qu8BoOganjwDf4dEJ7t7VG/UG/aeBXphc5NL0Ul9WPfSXBtprqq+PfrOVHMfwxNnJnoVeKYXQ68czgXQHCn3ltEuzdostARQKQrHQXwzLLzjt532F/p7TV14ep1Iq8IaD3eMN/hj91LQs15scOTfFWy1lKfnIlUMMDp+dwDH0tQADpUJf7TMeH53gVbdtij2XOox+s5V8ode7Z9K/wDg8OkGlVOha8eujtdl6FKyNpsNTfQg98HpQ9TkH6EPopaCVDvcRb/DH6GcOJ8fcIGuvNEM7bbm/OWweKvOqhKKuIPo1ZpbrTZ48O9nXnuuXkjnctxfav3L46ulx3nBwa89nmFf6zFZ65pUpqg2Ht1qMN0CuHGLx+JkJBssFHu5SXh9EPwHp5XqTI6/0ngkF/bvp/dIxrVbR/ViToxM80mO8Afo/q+D4pRkWas2e5wCuxdoPJXN4dJJtIxXuSehFFES/1cVzy3WO95jq66PfTJ/UQq/P96lX6s0fo58DhXyh10/efrnQ/3M61EPBaev6rfbpvc3h2twyL1yZ61PB9adEv3J6nGJBeKyHTKgsyJVDDL52Zpw3HNwWe95yFFzPobdF9vOg+7KIiwVqfQk9L8i6uzeh12+/nZklt59Sr7RYcIxehZKfRfTGHlJMg2P0a02+8VD37BgflT6tySPnplzqrY/NXOkzW+nw6CQHtw/3LfR6tVgvTy9xYXKJN/ajpPt8Tl85PU6pIP2NUSr0/L42Pertjf2sQ6k/b9qn3vpRcKU+iwUPj07w4L7Nic0hNZArhwiMz1d56ep835kA/cQcnhid7DkPunX9Pl3oJ0Yn+xJ6Ra8FSK9jPP3KJMb0L7ihd1rpybOT3L1rQ+LpcmH0Q2dcnHKpt34ERr8plE+cdesbkhoGdozRxxz8IGtf3lXLS+x1Dn76Zz9r3Z+H9dXT47zuwJbEdhNRY/T6nF64MsvcciPd+9qrgnt5nM1D5a4Fp+Exen1GS7Umxy7O9GWQpUWuHCLwtNc5s1uX1DD6sfaeOOvGG/rpi1Iu9n4ovB9v6Gczg++d9G7Vl4vSc5AV+qtqbTqGp85N9u0+l/rIVnrqnOuZdGtUF0S/AuPJsxM8uK/3eAP0l630whU3yNqP0Kv06cE9eXaSjYMlXpVwpknHGKXex5ivNjh+qX+h149gffJs+rXueQzvfe0l1ddHpVjo2YN79vwUDcf0va/TIFcOEXjmlSkqxUJf2h96T2WtNRyeOT/V12aG/pqAtemY/jabe3pXj2OMTvLQvt7jDRAIevfwnE6NeZZenxuhH6v7ybOTbBos9ZTq68MvIOtFYCzWGp6l1/8cejU0Do96a92H0Os3+eCJ0UkeO9if0Oun4v7o+Wkc058n7Y/R65548uwk+7YOde2nFL4+9DaHa7PLvDKxyGM9Zin56IdWeuLsJAWB1/dYe5UFuXKIwDPnp3j13k19CT3ovX3GsYtup9e0VlIvTcCeGJ1gSw9N5DrH6C1zYqHa4PlLM31b9f1Y3b6l12tKYHCMvoReH0FWCNaDdB/j2fPTNBzT93OqeMeE9rrWB7b1VtTlo58eVNdmlxkdX+jfmOljrZ865wq9bmdpdI4hPXnTxrj9lPpfh969H/+sjkf7FNx9va9nJ3hgz6bEVuZayJVDCLWGw3MXZ3h9H1SJj14D0k+03Ns+N5t/elcPG/qJs66l14/Qg95f1LRCrx9L7Mmzk+zfNtSX0HPH6I1WujbnCr20c+gl5tCy9HropxRErwWJjmN48lxvTeSC6KcHVcsL7duY6d3DeurcJK+6fVPfQdZe39cz1+eZWKjxpn7n0EdA+smzkwyW+2ccKsVCTzG4aqPJs+enVyXeALly6MDJsVlqDYdH+tzM0HtA+vDoBPft3si2HusbfJR7tFivzi5zfnIxVapbrwU5T5ydoCDwaJ9Wfa/ZH8a4Qu+xg/1vhF4FxlNn/diSPaH35NkJXr2n/8ySXq3uM9fnmV6s970OItJzMPfJs5OMVIq8uod+SkH0mtVVbzo8e366bw8Res/gS22Q9RFzOPLKJK/bv7WvDEd/jF5opeMXZ6g2HOsprD5y5RDCM55r2E+Q1cdAqUjDMYl53U3H8MwrU6kFN3S3Jp89Pw2QSsH1KjCefmWKB/Zs6iuzBNwCNeguMM6OLzC5UOs7KQB656GPvDLJULl/oder4K43HY5emO6bZoDeqatnL0wD/dMx0IeXeGGKhw9s6Xp+Q9T1oXux4MnLsyzVm+meU4+00tOvTLFjw0DXVuad1+9tz81XG5y8PNtzH7YgSn3sOYBHU+zrNMiVQwjPnJ9iz+bBnvPFg+jlqNCz4/Ms1Jo81EdxXev6PQYRn70wRbkoPNBHZomPcg+ZE45jOHZxpq8CweD1obsl9tzFaQAe3p9GYPQm9J67MM1r925u3VOv6LVW46WrcyzXnb5SWMNjdKN9jl6YZuNgiTt39FbLEh6jm9Bbrjd5YWyOh/Zt6f/6PTat8zPGHr0jncHUy1ofvTDNw/u39JzWHbw+9LDnzru1LP16cP4YvXgmRy9Mc2DbMNv7SOvOglw5hHDi8iwPptgI0NuZtscuzgDw4L7+eEnovZPm0fPTPHB7/wF16I1WGh2fZ77aSCUwfFqpG1//3IUZRipF7u6xajmIXiyxetPh+cuzPLS//3XwaaVusZ/nLrhr/XCa59SjEn32vCv0+o0tgde/qcv1T1yeoeGYlIZAb8bM0QvT7N0ylMogK/dAK80s1Rm9vtBzi5eV1+9tDs95HtzDKcao9FjI95yn4FYLuXIIYG65ztnxhb5pBh+9HBZ+7OIMQ+Uid+1MZ+lBspvedAzHL6Wz6t0xugvWo77Qy+A59EKXvHbf5r5SJ4NjdLPqX7wyR63hpPLgevZ+LkyzdbjM/m39BdSht4D0Yq3Bi1dmM6x197oZn6JMM0avMYeTY7M9nQ8RhV6ylY57Blkm76fL+3Ti8ix3bB9OlUXUy/kj12aXuTyznOp9TYtcOQRwamwOgFfvTfei9nLg+fFLM7xm76aUQq/7CWQvXZ1jsdZMZcG4Y3R305+7MM2GgVIqBddLzKHaaHLq8mzqjVAuFro2lPO5+kwKrouHdfTCNA+loDKCYyQJpeMXZ3AMqSxif4xutNJzF2fYs3mwpy6pUdeH5LVerDUyGWS9vK9HL7hc/WtTeOu9xhxOjs1mmkPDMYlpy0db72v/c0iLXDkEcOKya2H0m4rmo9JFOTSaDicuz/DavVvSXb+HzdZ+idIFrVxrspvAmObBfZtTURk+rZREBbwwNket6aSiY6C3NiPPXZhmx4ZKXwVRPnppMzJfbfDStXRcPfRGZ/gKLssY3byfo14wOt31uzetOzU2hzGkio/5Y3QT3EcvzHDnzpG+uhEErw/J6zC7XOeVicXUc+jFS3zu4jTFgqSWTWmQK4cATlyeZceGCrtSHqAxUHI5/jhr7/T1eZbrTqp4A/R2AtnR89NsGS5zMOWh4+Uu3UCX601OjWWz6oFEKsAPRqcdo9QDrfTchWke2pfOqgffO4kf4/lLMxiTzjOBQHJDkiFwPluAshv9NjFf5cLkUmrl00va8smxWQBevTftnkg2BIwxbjA65Rx6MQRe8BmHlIK7F0PguQsz3H/bxlRxxLTIlUMAJy7P8sCezakFxkCXmIMfjE7j3kJv+fXPXcwo9LrwnyfHZqk30wUooTdL7Oj5aXZtHOD2FAFKf4wkK2xuuc7p6/OZ+NtubUZ8Dy7tGJVeaKVLM9nm0OVQpHbGWLoxelnrk5dn2DxUZk/Kte6WmTY2s8z4fDXTc+qWTXTSYxzSxk26Ua2OY9x9vYrxBsiVQwvVRpOXr87xmpQLDN2zlY5fnGHDQIlD20dSXb/Sxeperjd5+do8r0kZM4HuHO5zGamM9lkIyS70gxkUXKUo1J341hPHPas+y2brZrEeuzjN/m1DfRc6+uhW8Di9WOPS9FJqKgPaXHccjl2cQQRek9Kq7005uFx9Jg8u6V3KqKShuyFw4vIs20fSMw7dUn7PTiwwt9xI7f2kRa4cPLx8dZ6GYzJxet2ogGNeMDoNVw9BgRH9op6+Nk/TMTxwe/o5dOuPf/LyLDs2DKRKO4TuvWoWaw1GxxcyKziTcMjMycsulZHFEOimRE9cnuU1Wd6lLoLVT5541e399c4KolRIPor01NgsB7ePMNJnoaOPbm3BG02HF67MZVZwSdTYicuzFAvSV2PFjjG6eFh+tlUWYwbi07tPXPapt/TPKQ3WTDmIyD8XkRdE5ISI/HTg+x8WkdMi8qKIfNNq3c9LV93Ndl+Gl8iPOVTrnS9SreFwaix9DQW0u4HGvai+0MsiMLoFKU+OzWa8vt/wLXqMF6+4Acp+WkOHUeqSYXJybJbdmwYyFRMlWazz1QavTCxmmkO3bKVTHleflsqA7rTSqbG5TGvdzRAYHV+g2nAyzaHseYlxODU2y507RjJx9Unp3bWGw8tX5zPNoRutdGpsllJBUtX8ZMGaKAcReQfwAeAhY8yrgZ/1vn8A+CDwauCbgV8WkVWJwLx0dZ5yUfourw8iyXN46aqbV//alC46dM+vPzk2y3ClyB0paStwj12Me0nrTW8jKAi9OMHqW8TZxkiOzZy8PJtJcEOyYH3xiie4M4zRLavr5JifPJHOg4NkBTe3XOf85GLP50VHXr9LQNo3ZrJ4691opVMZaiiCY8S9S6evzVNrOtne1y4U4qmxWe7etaFlfK4W1spz+CfATxpjqgDGmGve9x8APmOMqRpjzgKngcdW44ZOX5vjzh0b+m6lEERSQPr4pfSV0T669ds5NTbLfbdtTFVD4SPp/OXR6wvUmk5Gizi5G+jJsRk2DpbYt7X/FFMf/nOKis3UGg5nrs9nVg5JhUstDy6LVV90BUGc1X1qLLuCS7KIX7ziKemM1BvEv68nLs9QKRW4c2cGY6ZYoOkYnAgKcXqxxuWZ5eyGQMLZGq1sq0wUYvK56qfGZjMpn7RYK+VwL/C3ROQJEfmyiLzB+34vcCHw7y5633VARD4kIkdE5Mj169cz39DL1+a5u8ezluOQ1Fvp2MUZNg2WOLAtvWeS1CraGONRPtmtpDiBdHIsW1YGuN1AkwTrqbE5XnVbev4Wgm5653M6fW2eetNk3mxJMYeTY3NsGiylzsCBttUdZbFqeHCQPAeftspE7xW6ez/337Yxk0HW8k4iqKWTCnOA5Od04rLb8eDQjmwKDqKV6MR8lauz1cxzSANrykFE/kJEno/48wGgBGwD3gT8a+B3pE9pYIz5mDHmUWPMozt37sx0r8v1JucnF7knI6eXVAR3/FK2DBxIpksuTS8xt9zILDCSesufGptzLb0MGwHis2Qcx/BCxpiGe/14OkNNYCScyncqY4ASkgXGmevzmT048NNA4wT3HJuHyqnTicE1BOJSTY0xnLyc3SIuJxgCGkF7SPamT16e5f7bs3nrST3T2nO4iZSDMeZdxpjXRPz5PK5H8Fnj4knAAXYAl4D9gcvs876zitPX5jEG7tmV7SWKS2Vdrjd58cpc6voGH0kCQ+slSuJwT43Ncu/uDX23bu4cIzpL5sLUIgu1ZmaOOIl+OzU2y2C5kMnSg/gq7KZjePHKnEpMA6K9UA2rHpLTcf3EgywKDuLXemxmmanFukI8IP7Y2VNjbmZdlriMO0aCglOgfNpUa5SCy55kkhZrRSt9DngHgIjcC1SAceALwAdFZEBEDgH3AE/avpnT1+YBuFeJVgp7Di9emaPeNDyYIRgNya2iT16eRYRMKXvgCoxmxJkUWpYexG+2drZVdgUH0dbkycuz3Hdbut5WQZRiAvfnJhZYqjdVrHqI9hJPjc1RKWbj6iF+HVwFl52ihPg00HYwOrsHBzG00uXsXij4nYo7r39xyvPWsxozCRl8pxQy69JirZTDJ4A7ReR54DPAd3lexAngd4CTwJ8CHzHGdD+UOSNevjZHqSCZsnygvchh5XDsUrbKaB9JraKz5qS3x4i2uq/PVZlYqOkIjBihdGpsloLAvX2eex1GXMqvMYZTV2Z5QENglKJbRbdSTLUUXIw1ee9t2ZIn/DGihN65iQWW69lpK3+MqLU+0TJm7NBK9abD6WvZ4zIQX4V9QiHbCpJpJY04YlpkkyQpYYypAf8w5nc/AfzEat7Py1fnObhjpO/j/cIQEe+o0JX67PjFabaNpGvyFkRSKuupK+m7QgbRtmJWbrYTSlQGuBxuVFD95Ngcd+7ckLl/TFzF6ZXZZaYX6ypziDuBzM9JvyejF1osCMWIwL3vwb3z/l2Zrg9+Oq49BQd+pk/UWs9wSMOYKUXTSn5cJqtVD35WV9QcXGPmvozGTByt5GfWvUNhrdMgr5DGfZHuyuii+xgodVpjxy7O8Nq96Xs2+YizJucydoVcOUb0ZtPiud0xovPGNdIzIdhmZOVz0qKtIJkau2unTk56VEGirgcnsVSGVtFVXLrsybHZTKm+7etHUzLa72v0Ws9w184NDFWyrXUcrfTytTmVzLq0uOWVQ9MxXJhc4mDGAKWPgVJhBa20VHP7HWWpb/AR1yHSz0nX2AhxLu6psTn2bhlK1fY4jKhCu5nFeuZeQa3rx87BFRhZ4zLgdX6NyZDRCh5G0T5a2Vb+9evNznMETo3NcZeCB9ceI7TWS3UuTC6peLpxbcFPXp5VyayD+E7FJy9nL7CDpPd17TKVIFcOjM0sUWs6qZvhhTFQKq7Y0CfHZmk6JlNldBBRtJUvMDRe1LhA6MnLM2ovaVRq4KkrelkZpZiU31NjcxzYNszGFKd1hRGVhTO1UOPK7LLKOoDnhcYIDE0l2jmGTiDXHyNOSat6uhHPSSOzDqJjDlMLboGdxhxKLW89rKR1MuvS4pZXDufGFwEyB6N9VEK00nGv7XGWnkpBDFdKLNZWKodTY7NsGS5zW4rTusIoR5zxvFxvcnZ8QU3o2RYYcT19svaFCo9hk8qA6ILEk2Ozrgc3nF3B+anXy4FeYFMLNcYUqop9RAXu/UCuptUdVHDGGNWq4nJROgS3RmW0j1YiS8Se0MisS4tcOUwsAHBwR/rK5SAGQpb9sUsz7Nw4wO5NOqloQ+UiS7Ww55C9qthH1GZ78cocjoFXKdAx/hgddInX9nhnyrbHQUT1uFqsNTg3saAquG1SPv4YUUpUS8H5weDg+6St4CpF6VRwl2fZuTF7/QG4+wFcA8bHNcW4DESvg0aTSx+DFb9hZ3sObQW3+vUNPm555fDKxAIDpQK7FV5UcJVD0BJ77sI0DyoEo30MV4orPAc/J13Lqvc3m02BMVwpslRfqeBe8ArHNJ6TP4fgc9Lo9hpEeB3ApTJ2bhxgh1JOeiVEKy3Xm4xe10nPBHcO4CpOH6uh4DQKx3wMV1wFt1C1975GJVCcuDzDbZsGVeoPhr33NTiHq7NVppQy69LillcOZ8cXObh9JPUZC2FsHq4wvVgD3LNlz1xfSH2SVhSGK0UWA4L17LheTrp7fW+zBQTGC1fmGK4UM/WFCmKkUmKh2r5+o+nw4lW9QK5vES8GxtDk6sF9TtWGsyKdVSvbykc5lAb60lXPg1MaI0qJnhqbY8eGARUPDjqVg3+olkYwGtoKbqneudZZOsoGEdWB9+SYTuo4uMkNlVKBxRVz8JMncuWwZnhlYiFTm+4wto9UmFhwlcNx71hQzeP9hipFlmqdL5GW0BsZ8ARGwIo56XV71VKgYav77PgCtYamgvMsscAYL1yZZcNAKXOtiY/Wc/IUtV90pdnmINyiQzMVF9qGwGLIS9TyQsG3utsKzj9US2uM4YFOq/uFK7Ps2TyoEpeBzjqH5XqTM9f1YnAAI5Vix54DuD+nldYGjmN4ZXJRLY0VYNtIhUlPORzNeKRmFMIB6ZNjs5SLegeB+Fa37zkY4zfDU9wIAyXmq51UhpaVNFAqUCrICu/klNcBVEvBtZ6TN0arGZ6ipRdObjg1NsuIogc3FKKVag2Hl6/peXDg1/0E3tfLysZMS8GtXGvN97VSLNJ0TMtLfPHKHE3HqHkO0LmvX7gyx76tQ2xSyKxLi1taOVyZXabWcDiolKkErnJYrDVZqjU5emGaO3eMqFkw4HsOKzfbPbs2Zq7u9jES4nAvzywzu9xQC0aDa3Uv1pqt/PoXrsypKjgRWeGduApuTtUKa3kn3nN6wUJOepiS8VspaHpw0I4vnbmu0848iJGB4gqr3j+QSmvPDYX4et+q1zVmVo7RSh3PcBxvGO77GjZm1o5SgltcOZwb9zKVFGmlHRvcA+Wvz1V56twkj9yxVe3a4Aavwp6Dpnvru+n+i/qCcnAPXCup6ZhWseCpMbeqWEvBgWvZ+1b9xakl5qoNXYERslhPjc2qNMMLIsh1O47h1Nic7lpXVsYctJrhBbFpsMzscr319xNevYyWgisUxM3g8+g9/xx1zbXe5BV++vM4cXmGjQPZDqQKY3ig1KJB24kHa0cpwS2uHJYbTfZtHeIORVppv+fy//HzY0wv1nnb3TvUrg0rLYxrc8tcn9M9CCTsOfgxjSxna3eOsVIoadMAsDKu8YJXQa5pibVppbY1efeu7M3wgigX29X2F6YWma9mP68jiBatVG+vw0CpoOpJbxwss1hrUm86OI7bF0pT+YDvnbSVNOhy9ZsG3bX2lcPzl1yDTEvBgbsn/Fjiy1fnVRMP0mJNGu+tF7zz/t288/7dqtf0z4T42F+PAvCWu7arXn/TUJm5aoOmZ0mCHn8LbouOwXKhFXM4dWWO/duGVKqKfQyH+Hr3pCtdK2lkoNSeg2LbjPb1farBH2OOt9+b7dCpMDYPlTmx5Aqkk4qFYz7ahoA7B/9kNo2qYh+bhtwx5pcbTCzUWKg1eY1StwAfQyFDYLCsq+B83n9uuUGj6XBqbJbveNMdatcH15i5PO2udVvB5bTSTYUdGyrctmmQyYUabzy0jV0KVctBbBupYIx7Pu6Jy96xncov0YaBEnPLrsB4/tKMleuDu9nac9AVGCOVlXM4tCN7B9AV1/euNV9tcG12mfH5qqrgBtg6XGbSS4s+OTZLsSCZ25kHMVwpUikVmFqstYqutK1VX7DOLtd53m9dr6wcNg2WmVnyrfoZ7leuKm7RSkt1Xr42T7XhZG6/3zFGcA6XZxipFLlDKfEgLXLloAwR4Z++4y62DJf5l994n/r1/aKbyYUaR89Pc3D7sGrAG2D7yAAT81UmF2q8MrHIw/t14yZ+kdjEQpWj56eB7GdddIyxcYDx+SrGGI5emFatNYH2HMbnqzzrZaU9vF93DltHKizXHZZqTY5fmuFupWZ4PkSEHSMVJuZrXJxaYmqxzquVBfdGn5JZanD80gwDpULm43jD2LHBXeumYzh+aUZ9rVtzWHbnAKh7P+H39bX7NqvSVmlwS9NKtvCdbz7Id7zpDrWq6CB2jLgB7/H5Gs+cn+LrlKkMgF2bBrg2V+U5ry+U9mbzC6yuz1U5emGau3aOqHR7XTHGhgGuz1W5MrvMtbkqD6lbeiUqpUKrhXapICp9doLYNuyvdZVnz0/z7tfcpnp9cI2Nifkqz5yfAuCRA1tUr7/Fm8PUYo3jl9xgtCZtBa5yePnqHC9dnWOx1lR/X7cMeXNYqHFhapENAyW1Rp0+dmyoUG04TCzUODU2y/e87U7V66dB7jlYgg3FAG3P4dkLU4zP13jkgK5VD23BevT8NAVBpd34iut7ysFXQNqeiT/GYq3JV09PALqFiOCub/A5ver2TapWPbieA8BT5yaZWaqrZ74BbN/gFm0+88oUw5Vi5oNrwtizxaVVz00s8NyFaV6nrHwAdmysMD5fa9UVaSuHTUMlRipFLk0v8eTZSR7ar2/V+57oX790nXrTqM8hDXLlcINh/7YhROCTXzsHwBsPbVMfY9emQa7PVfmbl6/zwJ5Nqlw9uDGH4UqRv37pOuPzNd5wUF/o7fIU0Gefuchwpahu1YOrgM5OLPDM+Sleb0Fw79/qcs7/88hFAB61MMZtmwa5OLXEE2cneXj/FnWr/rZNgxQLwh8eG6PacHjznboJGgC7Nw5Sazr8wXOX2bFhQLXjAbiGwN6tQ5y4PMMLV+bszMGLTf7u0+5a23if+kWuHG4wDFdK3LFtmKuzVQ5sG1YrHAvivts2UGs6PHN+Wj0Dx8e9uzfytTOuVf/2+/TH8FNvv3ZmgrfctUO1hqI1xu6NPHt+mmrDsXKU4507RygIPD46wf5tQ1b6+t9320YmF2q8cGWOd9ynP4dSscDeLUM8eXaSUkF44yF9wXp/YK3ffu9OK177gW0jPHXOpd7eopyeDivf19fu3azW2yoLcuVwA+KbPO75H77pgJWN8PoDbW/k/Q/tVb8+0PIWXn/HVm7frFdM5OO+2zbiP5r3PXS7+vUBHvXmMFgu8KY79T24wXLb43nfg3vsrHXAQv1mCzENoGVp/+37dqknTwArgui21vrNXkr6ns2DvM4C5bNjw0Cr75etOfSLPCB9A+Jff+N9fMtrb+c1FqgSgAPbh/nZv/MQjmNUi9+C+PDb78IY+OBj+61cv1ws8InvfgPHLszw3gf3WBnj/Q/v4dzEAm+9e4fKmdFR+H++9TV89pmLfPhv32Xl+g/u28KPvOdV7No00Crg1MY///q7KRWFD7/dzhw2D5X5pb//CBenFq15uv/HG/ZzYXKR9z1kR0kD/OLfe5gvnrzGd775oJXr9wsJnx97I+LRRx81R44cWevbyJEjR44bCiLytDHm0ajfrQmtJCIPi8hhETkqIkdE5DHvexGRXxSR0yJyTEQeWYv7y5EjR45bHWsVc/hp4N8ZYx4GftT7O8C7gXu8Px8CfmVN7i5Hjhw5bnGslXIwgF+nvxm47P38AeDXjYvDwBYRWR/RmRw5cuS4hbBWAenvB/5MRH4WV0G9xft+L3Ah8O8uet+NhS8gIh/C9S44cOCAzXvNkSNHjlsO1pSDiPwFEJUb9yPA1wP/whjzeyLyd4GPA+/q5/rGmI8BHwM3IJ3xdnPkyJEjRwDWlIMxJlbYi8ivA9/n/fV/Ar/m/XwJCOY27vO+y5EjR44cq4i1ijlcBt7u/fxO4GXv5y8A3+llLb0JmDHGdFBKOXLkyJHDLtYq5vC9wC+ISAlYxosdAH8MvAc4DSwC/2htbi9Hjhw5bm3cFEVwInIdeCXlf98BjCvejhbW633B+r23/L76Q35f/eFmvK87jDGRZeU3hXLIAhE5ElchuJZYr/cF6/fe8vvqD/l99Ydb7b7yxns5cuTIkaMDuXLIkSNHjhwdyJWDVyuxDrFe7wvW773l99Uf8vvqD7fUfd3yMYccOXLkyNGJ3HPIkSNHjhwdyJVDjhw5cuTowC2tHETkm0XkRe/8iB9aw/vYLyJfEpGTInJCRL7P+/7HReSSd+7FURF5zxrc2zkROe6fveF9t01EvigiL3ufq3oauojcF3gmR0VkVkS+fy2el4h8QkSuicjzge8in89qnlcSc18/IyIveGP/vohs8b4/KCJLgef231b5vmLXTUR+2HteL4rIN63yff124J7OichR7/vVfF5xssH+O2aMuSX/AEXgDHAnUAGeAx5Yo3u5HXjE+3kj8BLwAPDjwL9a4+d0DtgR+u6ngR/yfv4h4KfWeB2vAHesxfMCvg54BHi+2/PBrf7/E0CANwFPrPJ9fSNQ8n7+qcB9HQz+uzV4XpHr5u2B54AB4JC3X4urdV+h3/8c8KNr8LziZIP1d+xW9hweA04bY0aNMTXgM7jnSaw6jDFjxphnvJ/ngFO4rcrXKz4AfNL7+ZPAt67drfD1wBljTNoK+Uwwxvw1MBn6Ou75rNp5JVH3ZYz5c2NMw/vrYdzGlquKmOcVhw8AnzHGVI0xZ3Hb6jy22vclIgL8XeC3bIydhATZYP0du5WVQ9zZEWsKETkIvA54wvvqn3nu4SdWm77xYIA/F5GnxT1DA2C3aTdEvALsXoP78vFBVm7atX5eEP981tM7949xLUwfh0TkWRH5soj8rTW4n6h1Wy/P628BV40xLwe+W/XnFZIN1t+xW1k5rDuIyAbg94DvN8bM4h6TehfwMO6BRz+3Brf1NmPMI7hHuH5ERL4u+Evj+rJrkg8tIhXg/bht32F9PK8VWMvnEwcR+RGgAXzK+2oMOGCMeR3wA8CnRWRT3P+3gHW3biH8PVYaIKv+vCJkQwu23rFbWTmsq7MjRKSMu/ifMsZ8FsAYc9UY0zTGOMCvYsmlToIx5pL3eQ34fe8ervquqvd5bbXvy8O7gWeMMVe9e1zz5+Uh7vms+TsnIt8NvBf4B55QwaNtJryfn8bl9u9drXtKWLf18LxKwLcBv+1/t9rPK0o2sArv2K2sHJ4C7hGRQ54F+kHc8yRWHR6n+XHglDHm5wPfB7nC/w14Pvx/Ld/XiIhs9H/GDWg+j/ucvsv7Z98FfH417yuAFRbdWj+vAOKez5qeVyIi3wx8FHi/MWYx8P1OESl6P98J3AOMruJ9xa3bF4APisiAiBzy7uvJ1bovD+8CXjDGXPS/WM3nFScbWI13bDUi7uv1D25k/yVczf8ja3gfb8N1C48BR70/7wF+Azjuff8F4PZVvq87cbNFngNO+M8I2A78Je4hTX8BbFuDZzYCTACbA9+t+vPCVU5jQB2X3/2euOeDm0HyS977dhx4dJXv6zQuH+2/Y//N+7f/u7e+R4FngPet8n3FrhvuscJngBeBd6/mfXnf/w/gw6F/u5rPK042WH/H8vYZOXLkyJGjA7cyrZQjR44cOWKQK4ccOXLkyNGBXDnkyJEjR44O5MohR44cOXJ0IFcOOXLkyJGjA7lyyHHTQ0S2BzpoXgl0AJ0XkV+2NOb3i8h3ej//exF5l41xIsZ9r4j8+9UYK8fNjTyVNcctBRH5cWDeGPOzFsco4ea/P2Laje5WBV7R1DPAW02g0C1Hjn6Rew45blmIyN8WkT/0fv5xEfmkiPyNiLwiIt8mIj8t7lkWf+q1MEBEXu81W3taRP4spuPlO3HbejS8//M/ROTbvZ/Pici/E5FnvGvfH3Ff3y0inxO3T/85EflnIvIDXqO3wyKyzft3/5e4ff6PichnoNVn569wW2TkyJEauXLIkaONu3AF+/uB3wS+ZIx5LbAEfIunIP4L8O3GmNcDnwB+IuI6bwWeThhn3LjNDH8F+Fcx/+Y1uD193uCNsWjcRm+PA9/p/ZsfAl5njHkQ+HDg/x7B7SSaI0dqlNb6BnLkWEf4E2NMXUSO4x4i9Kfe98dxD3i5D1dof9FlbyjitlwI43bcvvtx8JunPY2rAKLwJeP2758TkRngDwL38qD38zHgUyLyOeBzgf97DdiTMH6OHF2RK4ccOdqoAhhjHBGpm3ZAzsHdKwKcMMa8uct1loDBbuMATeL3YDXwsxP4u38vAN+Ce4LZ+4AfEZHXelTWoHcPOXKkRk4r5cjRO14EdorIm8FtpSwir474d6eAu23eiIgUgP3GmC8BPwhsBjZ4v76XtetIm+MmQa4ccuToEcY9TvbbgZ8SkedwO2S+JeKf/gmuRW8TReA3PQrsWeAXjTHT3u/eAfyR5fFz3OTIU1lz5LAAEfl94KNm5dGSqzHubuDTxpivX81xc9x8yJVDjhwWICL34Z7z+9erPO4bgLox5uhqjpvj5kOuHHLkyJEjRwfymEOOHDly5OhArhxy5MiRI0cHcuWQI0eOHDk6kCuHHDly5MjRgVw55MiRI0eODvz/WZdZRDLSCLYAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Plot the membrane potential\n",
"\n",
"plt.plot(t,state.T[0,:])\n",
"plt.xlabel(\"Time (in ms)\")\n",
"plt.ylabel(\"Voltage (in mV)\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ClwSmH1KYwHE"
},
"source": [
"#### Simulating Multiple Independent HH Neurons at the Same Time\n",
"\n",
"Converting loops into array operations is often termed ‘vectorization’. Array operations are computed by highly optimized functions and are, as a result, nearly an order of magnitude faster to evaluate. The form of the equations that describe the neural dynamics are similar across neurons even though the specific parameters may vary. A large number of such equations may thus be vectorized, eliminating lengthy for loops.\n",
"\n",
"Here we illustrate some simple steps that can be used to simulate populations of neurons efficiently. Key to setting up the equations is to order it in a manner that utilizes TensorFlow's algorithms that distribute vector, matrix and tensor computations over multiple cores. Consider a system of 20 independent HH neurons with different input currents that characterise the firing rates. \n",
"\n",
"##### Methods of Parallelization\n",
"TensorFlow has built-in functions that speed up Tensor computations using available multi-cores, and GPU/TPU setups. There are two major parts of the code where such a speed-up can be effected\n",
"\n",
"1. **RK4 iterations** Our implementation of the integrator utilizes Tensors as inputs. \n",
"2. **Functional Evaluations:** The form of the equations that describe the neuronal dynamics, are common across neurons. Only the parameters for differ across neurons. This can be used to `vectorize' the equations.\n",
"\n",
"Say $\\vec{X}=[V,m,n,h]$ is the state vector of a single neuron and its dynamics are defined using parameters $C_m,g_K,...E_L$ equations of the form: \n",
"\n",
"$$\\frac{d\\vec{X}}{dt} = [f_1(\\vec{X},C_m,g_K,...E_L),f_2(\\vec{X},C_m,g_K,...E_L)...f_m(\\vec{X},C_m,g_K,...E_L)]$$\n",
"\n",
"We can convert these equations to a form in which all evaluations are done as vector calculations and NOT scalar calculations. Despite the parameters being different, the functional forms of the equations are similar for the same state variable of different neurons. Thus, the trick is to reorganize $\\mathbf{X}$ as $\\mathbf{X'}=[(V_1,V_2,...V_n),(m_1,m_2,...m_n),(h_1,h_2,...h_n),(n_1,n_2,...n_n)]=[\\vec{V},\\vec{m},\\vec{h},\\vec{n}]$. And the parameters as $[\\vec{C_m},\\vec{g_K}] = [C_{m_{1}}\\dots C_{m_{n}},g_{K_{1}}\\dots g_{K_{n}}]$ and so on.\n",
"\n",
"The advantage of this re-ordering is that the differential equation of the form,\n",
"$$\\frac{dV_i}{dt}=f(V_i,m_i,h_i,n_i,C_{m_i},g_{K_i}...)$$\n",
"\n",
"is now easily parallelizable using a vector computation of the form, \n",
"\n",
"$$\\frac{d\\vec{V}}{dt}=f(\\vec{V},\\vec{m},\\vec{h},\\vec{n},\\vec{C_m},\\vec{g_K}...)$$\n",
"\n",
"The equations can now be written in the form,\n",
"$$\\frac{d\\mathbf{X'}}{dt}= \\Big[\\frac{d\\vec{V}}{dt},\\frac{d\\vec{m}}{dt},\\frac{d\\vec{h}}{dt},\\frac{d\\vec{n}}{dt}\\Big]$$"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "VjEQWyLfYwHF"
},
"outputs": [],
"source": [
"n_n = 20 # number of simultaneous neurons to simulate\n",
"\n",
"# parameters will now become n_n-vectors\n",
"\n",
"C_m = [1.0]*n_n # Membrane capacitances\n",
"g_K = [10.0]*n_n # K-channel conductances\n",
"E_K = [-95.0]*n_n # K-channel reversal potentials\n",
"\n",
"g_Na = [100]*n_n # Na-channel conductances\n",
"E_Na = [50]*n_n # Na-channel reversal potentials\n",
"\n",
"g_L = [0.15]*n_n # Leak conductances\n",
"E_L = [-55.0]*n_n # Leak reversal potentials\n",
"\n",
"\n",
"def K_prop(V):\n",
" \"\"\"\n",
" This function determines the K-channel gating dynamics.\n",
"\n",
" Parameters:\n",
" -----------\n",
" V: float\n",
" The membrane potential.\n",
" \"\"\"\n",
" T = 22 # Temperature\n",
" phi = 3.0**((T-36.0)/10) # Temperature-correction factor\n",
" V_ = V-(-50) # Voltage baseline shift\n",
" \n",
" alpha_n = 0.02*(15.0 - V_)/(tf.exp((15.0 - V_)/5.0) - 1.0) # Alpha for the K-channel gating variable n\n",
" beta_n = 0.5*tf.exp((10.0 - V_)/40.0) # Beta for the K-channel gating variable n\n",
" \n",
" t_n = 1.0/((alpha_n+beta_n)*phi) # Time constant for the K-channel gating variable n\n",
" n_0 = alpha_n/(alpha_n+beta_n) # Steady-state value for the K-channel gating variable n\n",
" \n",
" return n_0, t_n\n",
"\n",
"\n",
"def Na_prop(V):\n",
" \"\"\"\n",
" This function determines the Na-channel gating dynamics.\n",
" \n",
" Parameters:\n",
" -----------\n",
" V: float\n",
" The membrane potential.\n",
" \"\"\"\n",
" T = 22 # Temperature \n",
" phi = 3.0**((T-36)/10) # Temperature-correction factor\n",
" V_ = V-(-50) # Voltage baseline shift\n",
" \n",
" alpha_m = 0.32*(13.0 - V_)/(tf.exp((13.0 - V_)/4.0) - 1.0) # Alpha for the Na-channel gating variable m\n",
" beta_m = 0.28*(V_ - 40.0)/(tf.exp((V_ - 40.0)/5.0) - 1.0) # Beta for the Na-channel gating variable m\n",
" \n",
" alpha_h = 0.128*tf.exp((17.0 - V_)/18.0) # Alpha for the Na-channel gating variable h\n",
" beta_h = 4.0/(tf.exp((40.0 - V_)/5.0) + 1.0) # Beta for the Na-channel gating variable h\n",
" \n",
" t_m = 1.0/((alpha_m+beta_m)*phi) # Time constant for the Na-channel gating variable m\n",
" t_h = 1.0/((alpha_h+beta_h)*phi) # Time constant for the Na-channel gating variable h\n",
" \n",
" m_0 = alpha_m/(alpha_m+beta_m) # Steady-state value for the Na-channel gating variable m\n",
" h_0 = alpha_h/(alpha_h+beta_h) # Steady-state value for the Na-channel gating variable h\n",
" \n",
" return m_0, t_m, h_0, t_h\n",
"\n",
"def I_K(V, n):\n",
" \"\"\"\n",
" This function determines the K-channel current.\n",
"\n",
" Parameters:\n",
" -----------\n",
" V: float\n",
" The membrane potential.\n",
" n: float \n",
" The K-channel gating variable n.\n",
" \"\"\"\n",
" return g_K * n**4 * (V - E_K)\n",
"\n",
"def I_Na(V, m, h):\n",
" \"\"\"\n",
" This function determines the Na-channel current.\n",
" \n",
" Parameters:\n",
" -----------\n",
" V: float\n",
" The membrane potential.\n",
" m: float\n",
" The Na-channel gating variable m.\n",
" h: float\n",
" The Na-channel gating variable h.\n",
" \"\"\"\n",
" return g_Na * m**3 * h * (V - E_Na)\n",
"\n",
"def I_L(V):\n",
" \"\"\"\n",
" This function determines the leak current.\n",
"\n",
" Parameters:\n",
" -----------\n",
" V: float\n",
" The membrane potential.\n",
" \"\"\"\n",
" return g_L * (V - E_L)\n",
"\n",
"def dXdt(X, t):\n",
" \"\"\"\n",
" This function determines the derivatives of the membrane voltage and gating variables for n_n neurons.\n",
"\n",
" Parameters:\n",
" -----------\n",
" X: float\n",
" The state vector given by the [V1,V2,...,Vn_n,m1,m2,...,mn_n,h1,h2,...,hn_n,n1,n2,...,nn_n] where \n",
" Vx is the membrane potential for neuron x\n",
" mx is the Na-channel gating variable for neuron x \n",
" hx is the Na-channel gating variable for neuron x\n",
" nx is the K-channel gating variable for neuron x.\n",
" t: float\n",
" The time points at which the derivatives are being evaluated.\n",
" \"\"\"\n",
" V = X[:1*n_n] # First n_n values are Membrane Voltage\n",
" m = X[1*n_n:2*n_n] # Next n_n values are Sodium Activation Gating Variables\n",
" h = X[2*n_n:3*n_n] # Next n_n values are Sodium Inactivation Gating Variables\n",
" n = X[3*n_n:] # Last n_n values are Potassium Gating Variables\n",
" \n",
" dVdt = (np.linspace(0,10,n_n) - I_Na(V, m, h) - I_K(V, n) -I_L(V)) / C_m # The derivative of the membrane potential\n",
" # Input current is linearly varied between 0 and 10\n",
" \n",
" m0,tm,h0,th = Na_prop(V) # Calculate the dynamics of the Na-channel gating variables for all n_n neurons\n",
" n0,tn = K_prop(V) # Calculate the dynamics of the K-channel gating variables for all n_n neurons\n",
"\n",
" dmdt = - (1.0/tm)*(m-m0) # The derivative of the Na-channel gating variable m for all n_n neurons\n",
" dhdt = - (1.0/th)*(h-h0) # The derivative of the Na-channel gating variable h for all n_n neurons\n",
" dndt = - (1.0/tn)*(n-n0) # The derivative of the K-channel gating variable n for all n_n neurons\n",
"\n",
" out = tf.concat([dVdt,dmdt,dhdt,dndt],0) # Concatenate the derivatives of the membrane potential, Na-channel gating variables, and K-channel gating variables\n",
" return out\n",
"\n",
"\n",
"y0 = tf.constant([-71]*n_n+[0,0,0]*n_n, dtype=tf.float64) # Initial conditions for the membrane potential and gating variables\n",
"\n",
"epsilon = 0.01 # The step size for the numerical integration in ms\n",
"t = np.arange(0,200,epsilon) # The time points at which the numerical integration is being performed in ms\n",
"\n",
"state = odeint(dXdt,y0,t) # Solve the differential equations\n",
"\n",
"with tf.Session() as sess:\n",
" state = sess.run(state) # Run the session"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "7KdyqnVrYwHF",
"outputId": "8a435622-c95a-4a99-b339-e33c40270c50"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAATACAYAAADtDeYIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5wbd5n48c8jbe/V67bFNd1OHKeREAhJIAkp9A7hyJHLAcdB7jjqQeg1HOXov+QIEAg1FVJICAmQaie2E/fe7fXuentTeX5/zGhXXkta2V5pRvLzflkvq8xqHo1G88y3zPcrqooxxhhjjDHGmGMX8DoAY4wxxhhjjMkXVsAyxhhjjDHGmCliBSxjjDHGGGOMmSJWwDLGGGOMMcaYKWIFLGOMMcYYY4yZIlbAMsYYY4wxxpgpYgUsk3dE5H4RudbjGNpEREWkwMs4jDHG+JPlKmPylxWwTE4QkW0ickk6y6rq5ap62zGu7yYR+cWxvEca63ibiCwTkX4R2esm2wsyuc50ici7ReTvGXrvOhG5U0QGRGS7iLwtxbIiIl8VkU739lURkUzEZYwxx8pyVXb5KFfdJCIhdxvFbnMzEZfJDVbAMsYDInIj8C3gS0AT0AJ8H7jmKN7rsJpHn9dGfg8Yxfncbwd+ICKnJFn2euA1wGJgEXAV8C9ZiNEYY457lqvSzlUAv1bVirjblqxEaXzJClgm58RqrETkGyJyUES2isjlca//VUT+Oe7xe0RkrbvsgyLSGvfaKSLyZxHpEpH9IvIJEbkM+ATwZrcWaqW7bLWI3OLW4O0WkS+ISNB9LejG0yEiW4BXp4i/Gvgc8H5V/YOqDqhqSFXvVdWPuMv8VES+EPc3LxeRXXGPt4nIR0VkFTAgIvPdbh7XicgO4C9pfHYVkRtEZKOIdIvI99wWo5OAHwLnuZ+/++i+qYSfvRx4PfDfqtqvqn8H7gHemeRPrgVuVtVdqrobuBl491TFY4wxmWK56rjKVcYcwgpYJledA6wHGoCvAbeIHN51TESuwUlArwMagb8Bv3JfqwQeBh4AZgLzgUdU9QGc2rpYbdRi9+1+CoTd5c4AXgnEkuN7gSvd55cCb0gR+3lACXDnUXzueG/FSY41blwALwNOAl6V6rPHuRI4C6d16E3Aq1R1LXAD8KT7+WsSrVxEvu8mu0S3VUliXgiEVXVD3HMrgWS1gqe4r6ezrDHG+I3lquMjVwFc5RaAV4vIv6ZYzhwHrIBlctV2Vf2JqkaA24AZOM34E90AfFlV16pqGCcZne7Wjl0J7FPVm1V1WFX7VPXpRCsTkSbgCuBDbi1eO/A/wFvcRd4EfEtVd6pqF/DlFLHXAx1uPMfiO+76huKeu8mNb4jUnz3mK6rarao7gEeB09Nduaq+T1VrktwWJfmzCqB3wnM9QGWK5XsmLFuR6ATFGGN8yHLV8ZGrfoNTYGzEKcR+WkTemm6MJv9YAcvkqn2xO6o66N6tSLBcK/DtWG0V0AUIMAtoBjanub5WoBDYG/dePwKmua/PBHbGLb89xXt1Ag1y7H3Pd07yXKrPHrMv7v4gibfhVOoHqiY8VwX0pbl8FdCvqpqB2IwxZqpZrjoOcpWqrlHVPaoaUdUngG+TunXQ5DkrYJl8txP4lwk1VqXuAXAnkGyUn4kn8DuBEaAh7n2qVDXWXWAvThKMaUkR05Pue70mxTIDQFnc4+lpxDjxuVSffTKTFmBE5Idy6IhJ8bfVSf5sA1AgIgvinlsMJFt+tft6OssaY0yuslyV27kqUVzW0+I4ZgUsk+9+CHxc3JF/3It/3+i+dh8wQ0Q+JCLFIlIpIue4r+0H2kQkAKCqe4GHgJtFpEpEAiIyT0Re5i7/G+CDIjJbRGqBjyULSFV7gE8D3xOR14hImYgUisjlIvI1d7EVwBXiDBM7HfjQFH/2yewHZotIUYrPcYMeOmJS/C1hP3VVHQD+AHxORMpF5Hyc0ah+nmQ1PwNuFJFZIjIT+A+c6wuMMSafWK7K4VwlIteISK04zgY+CNyd5mcwecgKWCavqeqdwFeBO0SkF3gRuNx9rQ+4FGfo733ARuAi909/6/7fKSLPufffBRQBa4CDwO9w+tMD/AR4EOci2OdwDsyp4roZuBH4FHAApwbvA8Bd7iI/d99rG06y/PURfvSUnz0Nf8GpqdsnIh1Huu5JvA8oBdpxLmT+V1VdDSAiLxWR/rhlfwTcC7yAE/8f3eeMMSZvWK7K+Vz1FmATThfCnwFf1WOc48zkNrFLGUy+EZHHgf+nqj/zOhZjjDEmEctVxuSvSS9cFJFpwPk4F0YO4dQsLFPVaIZjM+aIiUgZTl/1rV7HYozJHstVJpdYrjImvyVtwRKRi3D65tYBz+M0kZbgzA0wD6fJ+WZVnTiMpTGecE+wNuF0KXuHjTRnTP6zXGVyjeUqY/JfqgLW14HvunMOTHytAGdehqCq/j6zIRpjjDGJWa4yxhjjN6kKWNNVdV/CF40xxhgfsFxljDHGb1IVsPbh9GH/FfB7Ve3OYlxHpKGhQdva2rwOwxhjzBRZvnx5h6o2Trac5SpjjDFeSZarUg1yMQu4BGfoyS+JyFM4CexuVR2aiqBEZBvOkJYRIKyqS0WkDmeYzzacYT/fpKoHU71PW1sby5Ytm4qQjDHG+ICIbE9zUctVxhhjPJEsVyWdB0tVI6r6oKr+E86s37fiTLK2VURun8LYLlLV01V1qfv4Y8AjqroAeIQUk+AZY4w5vlmuMsYY4zdpTTSsqqM4E9atBXqBkzIY0zVAbHK224DXZHBdxhhj8oTlKmOMMX6QsoAlIs0i8hF3dvD73OWvVtUlU7R+BR4SkeUicr37XJOq7nXv7wOapmhdxhhj8pDlKmOMMX6S9BosEXkCp2/7b4D3quryDKz/AlXd7c4J8WcRWRf/oqqqiCQchcNNctcDtLS0ZCA0Y4wxfme5yhhjjN+kGuTiY8DfMjkBnqrudv9vF5E7gbOB/SIyQ1X3isgMnEkjE/3tj4EfAyxdutQm6TPGmOOT5SpjjDG+krSApaqPA4jIHODfcEZKKoh7/epjWbGIlAMBVe1z778S+BxwD3At8BX3/7uPZT3GGGPyl+UqY4wxfpOqBSvmLuAW4F4gOoXrbgLuFJFYHL9U1QdE5FngNyJyHbAdeNMUrtMYY0x+ugvLVcYYY3wgnQLWsKp+Z6pXrKpbgMUJnu8ELp7q9RljjMlrlquMMcb4QjoFrG+LyGeAh4CR2JOq+lzGojLGGGOOjOUqY4wxvpBOAes04J3AKxjvdqHuY2OMMcYPLFcZY4zxhXQKWG8E5roTOBpjjDF+ZLnKGGOML6ScaNj1IlCT4TiMMcaYY2G5yhhjjC+k04JVA6xzR0yK79d+TEPfGmOMMVOoBstVxhhjfCCdAtZnMh6FMcYYc2wsVxljjPGFSQtYqvpYNgIxxhhjjpblKmOMMX6RzjVYxhhjjDHGGGPSYAUsY4wxxhhjjJkiVsAyxhhjjDHGmCky6TVYInI+cBPQ6i4vgKrq3MyGZowxxqTHcpUxxhi/SGcUwVuADwPLgUhmwzHGGGOOiuUqY4wxvpBOAatHVe/PeCTGGGPM0bNcZYwxxhfSuQbrURH5uoicJyJLYrdMByYil4nIehHZJCIfy/T6jDHG5LSs5yrLU8YYYxJJpwXrHPf/pXHPKfCKqQ/HISJB4HvApcAu4FkRuUdV12RqncYYY3JaVnOV5SljjDHJpDPR8EXZCGSCs4FNqroFQETuAK4BLHEZY4w5jAe5yvKUMcaYhJIWsETkHar6CxG5MdHrqvrNzIXFLGBn3ONdjNdOxuK7HrgeoKWlJYOhGGOM8SsPc9WkecqNz3KVMcYcZ1Jdg1Xu/l+Z5OYpVf2xqi5V1aWNjY1eh2OMMcYblquMMcb4StIWLFX9kfv/Z7MXzpjdQHPc49nuc8YYY8wYD3OV5SljjDEJJW3BEpFPiUhditdfISJXZiYsngUWiMgcESkC3gLck6F1GWOMyVEe5irLU8YYYxJKNcjFC8C9IjIMPAccAEqABcDpwMPAlzIRlKqGReQDwINAELhVVVdnYl3GGGNymie5yvKUMcaYZFJ1EbwbuFtEFgDnAzOAXuAXwPWqOpTJwFT1T8CfMrkOY4wxuc3LXGV5yhhjTCLpDNO+EdiYhViMMcaYo2K5yhhjjF+kGkXQGGOMMcYYY8wRsAKWMcYYY4wxxkwRK2AZY4wxxhhjzBSZtIAlIgtF5BERedF9vEhEPpX50Iwxxpj0WK4yxhjjF+m0YP0E+DgQAlDVVTjzfRhjjDF+YbnKGGOML6RTwCpT1WcmPBfORDDGGGPMUbJcZYwxxhfSKWB1iMg8QAFE5A3A3oxGZYwxxhwZy1XGGGN8YdJ5sID3Az8GThSR3cBW4B0ZjcoYY4w5MparjDHG+EI6Ew1vAS4RkXIgoKp9mQ/LGGOMSZ/lKmOMMX4xaQFLRG6c8BigB1iuqisyE5YxxhiTPstVxhhj/CKda7CWAjcAs9zbvwCXAT8Rkf/KYGzGGGNMuixXGWOM8YV0ClizgSWq+h+q+h/AmcA04ELg3UezUhG5SUR2i8gK93ZF3GsfF5FNIrJeRF51NO9vjDHmuGO5yhhjjC+kM8jFNGAk7nEIaFLVIREZSfI36fgfVf1G/BMicjLOvCWnADOBh0VkoapGjmE9xhhj8p/lKmOMMb6QTgHrduBpEbnbfXwV8Ev3QuI1UxzPNcAdqjoCbBWRTcDZwJNTvB5jjDH5xXKVj6kq4agScW+x+1FV93VQFPff2GP3Zfe5uMfJXndfI+61bMny6jz4fNn+hMZk1oyqUqrLCjPy3umMIvh5EXkAeIn71A2qusy9//ZjWPcHRORdwDLgP1T1IE6/+afiltnlPncYEbkeuB6gpaXlGMIwxhiT6yxXHZtwJEpH/yj7e4c5ODhK33CY3uEQvUOx/0MMjkYYDkUYCUcZDk28H2U0EiUaV3gKR6NEozj/27m5McZn/ufNi3ntGbMz8t7ptGChqs+KyHagBEBEWlR1R6q/EZGHgekJXvok8APg8zgVPp8HbgbecwRxo6o/xpnzhKVLl+bUoXskHKFvOEz/cJjhcISRUHQsSY2Eo4yEnWQ1Eo4QjozX+EXUrfFzE1hU415zX49GNUXtX+ye+/rYa+ouz/hrjD8RXzM4/rqZSprtqkhjMmheYwUfvnRh1tdruSq1roFRNu7vY2vHAFs7BtjSMcCe7iH2947QOTCStEWkMChUlRRSXlxAcUGAksIgxQUByooKqC1zHxcGKAoGKAgKBYEAwYCM3Qpi90UIBmOPAwQFAgFBYisS574ICOL+7zwG5znGnotbNu71sftxr2dT3KfJzvqy/vmMyR+Lmmsy9t7pDNN+NU5SmQm0Ay3AOpy+50mp6iXpBCAiPwHucx/uBprjXp7tPud7w6EI2zoH2Nk1xP7eYdr7RjjQN0x77wgdA6P0uTWBfcMhRsLRKVmnCE7CiktegYAQSJpgxhNW7O9jyUDiklb8+09MXON/m+00chywDWryREEg+zuz5apDRaLKi7t7eHJLJ6t2dbNyZw+7u4fGXi8qCNBWX8asmlIWza6msbKEpqpiplWWUFdeRHVpAVUlhVSVFlJcEDgkNxhjjEktnRaszwPnAg+r6hkichHwjmNZqYjMUNW97sPXAi+69+/B6TP/TZwkuQB45ljWNdWiUWVr5wAv7Oph1a4e1u3rZWvHAHt7hg9ZTgTqy4torCyhoaKI2bWlTrIqKaCqtJDKkgIqigsodWv+iguClLj/Fxe4/xcGKAg4tYGBAAQDQkDGawMt4RljzJjjPlcNhyI8srad+1/cyz82dXBwMARAc10pp7fUcO1LWjlhehVzG8qZWVNK0IOCsDHGHA/SKWCFVLVTRAIiElDVR0XkW8e43q+JyOk43S624cxXgqquFpHf4FyQHAbe74dRmXZ2DfLYhgP8fWMHT2zuoHc4DEBJYYATp1dx3tx62hrKaWsop7WujKYqp1BVEExnFHxjjDFT4LjNVS/u7uG2J7Zx/4v76B8J01BRzCtObOLChQ28ZF4DjZXFXoVmjDHHpXQKWN0iUgE8DtwuIu3AwLGsVFXfmeK1LwJfPJb3nwrtfcPcs2IP967cw8pdPQDMrC7hslOns7StjkWzq5nfWGGFKGOM8YfjLlf9Y1MH3/3LRp7a0kV5UZBXL5rBNafP4ty59dY6ZYwxHkqngHUNMAR8GGckpmrgs5kMyksv7Orh1n9s5b5VewhFlFNmVvHxy0/kkpObmNtQbt3yjDHGn46bXLV+Xx9f+tNaHttwgBnVJXziihN581ktVJdmZrhhY4wxRyadAtanVfWjQBS4DUBEvgp8NJOBZdvG/X189YH1PLx2P+VFQd5xbitvP6eV+dMqvA7NGGPM5PI+V42Go3zv0U1879FNlBUF+eQVJ/Gul7RSXBD0OjRjjDFx0ilgXcrhCeryBM/lrG8/vJFvP7KB8qIC/vOVC3nXS9qoKrGaQGOMySF5nau6B0d5y4+fYt2+Pl57xiw+feXJ1JYXeR2WMcaYBJIWsETkX4H3AXNFZFXcS5XAPzIdWDadOKOSd79kDh94xXzqLGEZY0zOOF5yVXVpIWe01PAfrzyBS09u8jocY4wxKaRqwfolcD/wZeBjcc/3qWpXRqPKsledMp1XnZJonkljjDE+d1zkKhHhy69b5HUYxhhj0pCqgBUEeoH3T3xBROryKXEZY4zJWZarjDHG+EqqAtZynLk/ACYOnafA3IxEZIwxxqTPcpUxxhhfSVrAUtU52QzEGGOMOVKWq4wxxvhNOqMIIiJXAxe6D/+qqvdlLiRjjDHmyFmuMsYY4weByRYQka8A/w6scW//LiJfynRgxhhjTLosVxljjPGLdFqwrgBOV9UogIjcBjwPfCKTgRljjDFHwHKVMcYYX0iriyBQA8RGYqrOTChHb/ny5R0isv0Y36YB6JiKeLIgV2LNlTghd2LNlTghd2LNlTghd2Kdijhbj+JvarBc5Re5EifkTqy5EifkTqy5EifkTqy5EidkMFelU8D6MvC8iDyKM0LThRw614jnVLXxWN9DRJap6tKpiCfTciXWXIkTcifWXIkTcifWXIkTcidWj+K0XOUjuRIn5E6suRIn5E6suRIn5E6suRInZDbWpAUsEfke8EtV/ZWI/BU4y33po6q6LxPBGGOMMUfCcpUxxhi/SdWCtQH4hojMAH4D/EpVn89OWMYYY0xaLFcZY4zxlaSjCKrqt1X1POBlQCdwq4isE5HPiMjCrEWYPT/2OoAjkCux5kqckDux5kqckDux5kqckDuxZi1Oy1W+lStxQu7EmitxQu7EmitxQu7EmitxQgZjFVVNf2GRM4BbgUWqGsxUUMYYY8zRslxljDHGS+nMg1UgIleJyO3A/cB64HUZj8wYY4xJk+UqY4wxfpG0BUtELgXeijO3yDPAHcDdqjqQvfCMMcaY5CxXGWOM8ZtULVgfB54ATlLVq1X1l/masETkMhFZLyKbRMQ3w/qKSLOIPCoia0RktYj8u/v8TSKyW0RWuLcrvI4VQES2icgLbkzL3OfqROTPIrLR/b/W4xhPiNtuK0SkV0Q+5JdtKiK3iki7iLwY91zCbSiO77j77SoRWeJxnF93r31ZJSJ3ikiN+3ybiAzFbdsfZivOFLEm/b5F5OPuNl0vIq/yOM5fx8W4TURWuM97tk1THJe82k+Pi1zl1zwFuZWrciFPuTH5NlflSp5KEavvclWu5KkUsVqumkhVj+sbEAQ2A3OBImAlcLLXcbmxzQCWuPcrcUbLOhm4CfhPr+NLEO82oGHCc18DPube/xjwVa/jnPDd78OZJM4X2xRn7p4lwIuTbUOcGvv7ceb8ORd42uM4XwkUuPe/GhdnW/xyPtmmCb9v9/e1EigG5rjHhqBXcU54/Wbg015v0xTHJd/tp/ly83OemmSf8MVxdUKsOZWn4r5/3+SqXMlTKWL1Xa7KlTyVLNYJr1uuUp38GqzjwNnAJlXdoqqjON1LrvE4JgBUda+qPufe7wPWArO8jeqIXQPc5t6/DXiNd6Ec5mJgs6pu9zqQGFV9HOia8HSybXgN8DN1PAXUiDNUtSdxqupDqhp2Hz4FzM5GLJNJsk2TuQa4Q1VHVHUrsAnnGJFxqeIUEQHeBPwqG7GkkuK45Lv9NI/4Nk9BXuQqP+cp8FmuypU8BbmTq3IlT4HlqnRZAcvZ2DvjHu/Ch4lBRNqAM4Cn3ac+4DZh3uqH7gwuBR4SkeUicr37XJOq7nXv7wOavAktobdw6EHAj9sUkm9DP++778GpCYqZIyLPi8hjIvJSr4KaINH37ddt+lJgv6pujHvO82064biUi/tprsiZbZgDuSrX8hTkRq7K1d+/33NVLuUpsFw1xgpYOUBEKoDfAx9S1V7gB8A84HRgL05zrB9coKpLgMuB94vIhfEvqtMGm/68ABkkIkXA1cBv3af8uk0P4adtmIyIfBIIA7e7T+0FWlT1DOBG4JciUuVVfK6c+L7jvJVDT7A836YJjktjcmE/NVMvR3JVzuQpyM1c5bdtmEwO5Crff9cJWK5yWQELdgPNcY9nu8/5gogU4uwYt6vqHwBUdb+qRlQ1CvyELDYNp6Kqu93/24E7ceLaH2tidf9v9y7CQ1wOPKeq+8G/29SVbBv6bt8VkXcDVwJvdw9cuN0YOt37y3H6i3s6AWyK79uP27QAZ7jxX8ee83qbJjoukUP7aQ7y/TbMlVyVY3kKcidX5dTvPxdyVS7lKbBcNZEVsOBZYIGIzHFrit4C3ONxTMBYX9ZbgLWq+s245+P7hL4WeHHi32abiJSLSGXsPs5FpC/ibMtr3cWuBe72JsLDHFLL4sdtGifZNrwHeJc78s25QE9cs3fWichlwH8BV6vqYNzzjSISdO/PBRYAW7yJciymZN/3PcBbRKRYRObgxPpMtuOb4BJgnaruij3h5TZNdlwiR/bTHOXbPAW5k6tyME9B7uSqnPn950quyrE8BZarDqUejOzhtxvOyCEbcErWn/Q6nri4LsBpulwFrHBvVwA/B15wn78HmOGDWOfijGqzElgd245APfAIsBF4GKjzQazlQCdQHfecL7YpTiLdC4Rw+v9el2wb4ox08z13v30BWOpxnJtw+i/H9tUfusu+3t0nVgDPAVf5YJsm/b6BT7rbdD1wuZdxus//FLhhwrKebdMUxyXf7af5dMOneWqSfcIXx9W4OHMmT7lx+TJXJTmm+vL3nyRW3+WqJHH6Lk8li9V9/qdYrhq7JZ1o2BhjjDHGGGPMkbEugsYYY4wxxhgzRayAZYwxxhhjjDFTxApYxhhjjDHGGDNFrIBljDHGGGOMMVPECljGGGOMMcYYM0WsgGXMERKRehFZ4d72ichu936/iHw/Q+v8kIi8y73/ORG5JBPrSbDeK0Xkc9lYlzHGmKlhecoYb9kw7cYcAxG5CehX1W9kcB0FOPNHLFHVcKbWk2Td4q77fI2bkNEYY0xusDxlTPZZC5YxU0REXi4i97n3bxKR20TkbyKyXUReJyJfE5EXROQBESl0lztTRB4TkeUi8uCEmdtjXgE8F0taIvJTEXmDe3+biHxWRJ5z3/vEBHG9W0TuEpE/u8t/QERuFJHnReQpEalzl/ugiKwRkVUicgeAOjUwfwWuzMAmM8YYk0WWp4zJDitgGZM583CSztXAL4BHVfU0YAh4tZu8vgu8QVXPBG4Fvpjgfc4HlqdYT4eqLgF+APxnkmVOBV4HnOWuY1BVzwCeBN7lLvMx4AxVXQTcEPe3y4CXTvJZjTHG5B7LU8ZkQIHXARiTx+5X1ZCIvAAEgQfc518A2oATcBLKn50eDgSBvQneZwawNsV6/uD+vxwnOSXyqKr2AX0i0gPcGxfLIvf+KuB2EbkLuCvub9uBmSnWb4wxJjdZnjImA6yAZUzmjACoalREQjp+wWMU57cnwGpVPW+S9xkCSiZbDxAh+W96JO5+NO5xLBaAVwMXAlcBnxSR09zuHiVuDMYYY/KL5SljMsC6CBrjnfVAo4icByAihSJySoLl1gLzMxmIiASAZlV9FPgoUA1UuC8vBF7M5PqNMcb4kuUpY46CFbCM8YiqjgJvAL4qIiuBFcBLEix6P06NXSYFgV+43USeB76jqt3uaxcBf8zw+o0xxviM5Sljjo4N025MDhCRO4H/UtWNWV5vE/BLVb04m+s1xhiTWyxPGTPOCljG5AAROQFoUtXHs7zes4CQqq7I5nqNMcbkFstTxoyzApYxxhhjjDHGTBG7BssYY4wxxhhjpogVsIwxxhhjjDFmilgByxhjjDHGGGOmiBWwjDHGGGOMMWaKWAHLGGOMMcYYY6aIFbCMMcYYY4wxZopYAcsYY4wxxhhjpogVsIwxxhhjjDFmilgByxhjjDHGGGOmiBWwjDHGGGOMMWaKWAHL5B0RuV9ErvU4hjYRUREp8DIOY4wx/mS5ypj8ZQUskxNEZJuIXJLOsqp6uaredozru0lEfnEs75HGOt4mIstEpF9E9rrJ9oJMrjNdIvJuEfl7ht77A+7nHhGRn6ax/IdFZJ+I9IrIrSJSnIm4jDHmWFmuyi6/5Co3joi7jWK3l2ciLpMbrIBljAdE5EbgW8CXgCagBfg+cM1RvNdhNY8+r43cA3wBuHWyBUXkVcDHgIuBVmAu8NmMRmeMMQawXEWaucr1pKpWxN3+mrnQjN9ZAcvknFiNlYh8Q0QOishWEbk87vW/isg/xz1+j4isdZd9UERa4147RUT+LCJdIrJfRD4hIpcBnwDe7NZCrXSXrRaRW9wavN0i8gURCbqvBd14OkRkC/DqFPFXA58D3q+qf1DVAVUNqeq9qvoRd5mfisgX4v7m5SKyK+7xNhH5qIisAgZEZL7bzeM6EdkB/CWNz64icoOIbBSRbhH5njhOAn4InOd+/u6j+6YScz/zXUBnGotfC9yiqqtV9SDweeDdUxmPMcZkguWq4ypXGXMIK2CZXHUOsB5oAL4G3CIiMnEhEbkGJwG9DmgE/gb8yn2tEngYeACYCcwHHlHVB3Bq637t1kItdt/up0DYXe4M4JVALDm+F7jSfX4p8IYUsZ8HlAB3HsXnjvdWnORY48YF8DLgJOBVqT57nCuBs4BFwJuAV6nqWuAGxmvjahKtXES+7ya7RLdVx/jZYk4BVsY9Xgk0iUj9FL2/McZkkuWq4yNXAZzhFlw3iMh/i79b50yGWQHL5KrtqvoTVY0AtwEzcLovTHQD8GVVXauqYZxkdLpbO3YlsE9Vb1bVYVXtU9WnE61MRJqAK4APubV47cD/AG9xF3kT8C1V3amqXcCXU8ReD3S48RyL77jrG4p77iY3viFSf/aYr6hqt6ruAB4FTk935ar6PlWtSXJbdIyfLaYC6Il7HLtfOUXvb4wxmWS56vjIVY8DpwLTgNfjFCo/MkXvbXKQFbBMrtoXu6Oqg+7digTLtQLfjtVWAV2AALOAZmBzmutrBQqBvXHv9SOcgyk4tYo745bfnuK9OoGGKajd2jnJc6k+e8y+uPuDJN6GXuoHquIex+73eRCLMcYcKctVx0GuUtUtqrpVVaOq+gJO18pUrYMmz1kBy+S7ncC/TKixKlXVJ9zX5ib5O03wPiNAQ9z7VKnqKe7re3GSYExLipiedN/rNSmWGQDK4h5PTyPGic+l+uyTSfTehxCRH8qhIybF31ansY50rAYWxz1eDOxXVesTb4zJJ5arcjtXJYrrsK6g5vhhBSyT734IfFxEToGxi3/f6L52HzBDRD4kIsUiUiki57iv7QfaRCQAoKp7gYeAm0WkSkQCIjJPRF7mLv8b4IMiMltEanFGvktIVXuATwPfE5HXiEiZiBSKyOUi8jV3sRXAFSJSJyLTgQ9N8WefzH5gtogUpfgcN+ihIybF305J9nciUiAiJUAQCIpISYoa0p8B14nIySJSA3wK5/oCY4zJJ5arcjhXudukyb1/IvDfwN1pfgaTh6yAZfKaqt4JfBW4Q0R6gReBy93X+oBLgatwuh9sBC5y//S37v+dIvKce/9dQBGwBjgI/A6nPz3AT4AHcQZheA74wyRx3QzciFNgOIBTg/cB4C53kZ+777UNJ1n++gg/esrPnoa/4LQe7RORjiNd9yQ+BQzhJPZ3uPc/BSAiLW6tYguAexH313D63O/A6c7ymSmOxxhjPGW5KrdzFc5UIqtEZAD4E852/dIUx2NyiKimbl0VkWnA+Tj9dodwdvxlqhrNfHjGHDkReRz4f6r6M69jMcZkh+Uqk2ssVxmTv5JeuCgiF+GU2uuA54F2nOE6XwPME5HfATeram8W4jQmLSJShtNXfavXsRhjMs9ylclFlquMyW+pRoa5AnivOyTmIdw+qFfiNFn/PkOxGXNE3BrsTcC9wN89DscYkx2Wq0xOsVxlTP5L2kVQRKar6r6ELxpjjDE+YLnKGGOM36Qa5GKFiDwsIte5o3cZY4wxfmO5yhhjjK+kasEKApfgzP59BfAU8Cvg7gmzcXuuoaFB29ravA7DGGPMFFm+fHmHqjZOtpzlKmOMMV5JlqsmHUUQwJ1f4HKcBHYR8Iiqvv1YgxKRbUAfEAHCqrpUROpwhvlswxn2802qejDV+yxdulSXLVt2rOEYY4zxCRFZrqpLj/BvLFcZY4zJmmS5Kq15sFR1FGc+hbVAL3DSFMZ2kaqeHhfcx3CS4gLgEVJMgmeMMcbEWK4yxhjjBykLWCLSLCIfcSevu89d/mpVXZLBmK4BbnPv34Yz1K4xxofCkSifv28NX/7TWnZ2DXodjjlOWa7yp98t38V/3/Uiz+1I2bCX8zbu7+M/frOSW/6+leFQxOtwMuq2J7bxiTtf4OktnV6HklEd/SN89Her+PbDG+keHPU6nIz60wt7+chvV/LAi/tIp1dbrhoJR/jM3S9m7Xwl1TVYTwCzgN8Ad6jq8ilfuchWnFnGFfiRqv5YRLpVtcZ9XYCDsccT/vZ64HqAlpaWM7dv3z7V4RljJrF8exev/8GTANSUFXL3+8+ntb7c46hMPki3i6DlKv869TMP0j8SJhgQ/t+7lnLRidO8Dikj/vuuF/n5U873et7cen5+3dkUBNPqIJRThkMRTvnMg0Siznnj/77tDK5cNNPjqDLj1r9v5XP3rQFgTkM5d3/gfKpKCj2OKjNe9vVH2d7pFDj+49KF/NvFCzyOKDMe23CAa299Bpja85Wj6SL4MaBNVT+SiYTlusCtYbwceL+IXBj/ojqlv4QlQFX9saouVdWljY2TXgdtjMmAkVAUgK++/jQiEeWLf1zrcUTmOGS5yqeGQxHedV4rC6ZV8Km7Xhw7Mc83fcMhWuvL+PLrTuPJLZ3cvWKP1yFlxHAoQiSqfORVJ3B6cw033bOGodH8bLEbGAkD8PPrzmZb5wA/emyzxxFlTv9wmLee3cyVi2bwnb9sZHe3r8YGmjJ9wyEAfvzOMwlHlK/cvy6j60tawFLVx1VVRWSOiHxTRP4gIvfEblOxclXd7f7fDtwJnA3sF5EZAO7/7VOxLmPM1Au5J0zzp1Xwrpe08vDa/eztyc+Ds/Eny1X+pKqEo0ptWREfumQBu7uHeHzDAa/DyohQRCkICG85q5mFTRXc/nR+tlKGIs7xvrKkgP961Ql09I/w0Jr8nIIultsumN/AK09u4lfP7CQciXocVWaEIlGKC4J8/IqTCEeV3zy70+uQMiLs7r8Lmip553mtPLB6H+29wxlbXzpt2HfhjJD0XeDmuNsxEZFyEamM3QdeCbwI3ANc6y52LXD3sa7LGJMZobCTcAqDAV57xmyiCn9ZZ+eZxhN3YbnKN2In44VB4RUnNlFeFOThtfs9jiozRiNRCoMBRISrF8/kuR3d7M/giZtXwlHneF8QCHDu3HqmVRbz4Or8LGCFI1EKAuJ+p7PoGhhl2fb8vJYwHFWCAWFWTSlntdXl7XcaisT2X+F1Z8xCFR5ck7ljUjoFrGFV/Y6qPqqqj8VuU7DuJuDvIrISeAb4o6o+AHwFuFRENuLMbfKVKViXMSYD4hPuvMZyZtWU5m0ttfE9y1U+Ejs2FAYDFBUEOG9ePX/f1OFxVJkRjkQpKnBOp15+gnOd2dNbu7wMKSNiLQAFQSEQEC5c2MjTW7rycmCEcFQpCAoAFy5sICDw5Ob8HNgjHBn/rC8/oZF1+/roGsi/gT3C0VilT4AFTZX84X0v4W1nt2RsfQVpLPNtEfkM8BAwEntSVZ87lhWr6hZgcYLnO4GLj+W9jTHZEaulLipwavrOnlPHE5vz8yTK+J7lKh8JhWMn407BY2lbHQ+vbefgwCi15UVehjblQhGl0P2cJ06vpLQwyHPbD3L14vwaAGL8BNU5GV/aWsvvlu9iW+cgcxrya3CjUCRKYcD5TitLClnYVJm3o2GGo+Of9cyWWgCe33GQi09q8jKsKRfr4hkrTC5xP2umpFPAOg14J/AKINYBVd3Hxpjj2HiTu3NwPnVWNXc+v5v9vcM0VZV4GZo5/liu8pFR99hQ5J7MnDarGoDVe3q5YEGDZ3FlwqjbnQycAuXi5mqez8OT8fCE4/2SVucEdcXOg3lXwIpv1QHns967cg+qijNoaH6IRpWojhc6Fs2uIRgQnt/RnXcFrLFuy4HsjPCZTgHrjcBcdwJHY4wZE99lBGDRbOck6oVdPTSdbAUsk1WWq3wkvosgwCkzqwB4YXdP3hWwQpEoFcXjp1Mnzajijmd2Eo0qgUD+nIzHX1cHzvDlRcEA6/f1exlWRoQi0UOG2j95RhW/fHoHe3uGmVlT6mFkUys04XdaWhRkTkM56/f3eRlWRoxd0hDMzm8ynWLci0BNhuMwxuSg8Vrq8e4xABva8+/gbHzPcpWPTOwiWFNWxIzqEjbm44lbXBdBgIVNlQyFInk33HX8NbfgnJTPbSxnQx5+p6GIjuU1gAXTKgDY2J5fhcmxStK4ioCFTRV5+TsNTagQzrR0WrBqgHUi8iyH9mu/OlNBGWNyw3if5vG+6o2VxWw5MOBlWOb4VIPlKt8YrxkfP5mZ21jOlo78OzaEItFDPufCJudkfMP+PprryrwKa8olOkFd2FTJ8jwcXS8cjR72OQE27u/jZQvzZz678V4o8YXJSu5/cR/DoQglhUGvQptyYR92EfxMxqMwxuSkiRc9A8xrLGfLgfyq5TM5wXKVj8Suz4xv2ZnTUM49K/LvOpbYMO0x86e5Lfn7+/PqOpZwgu90YVMF96zcw8BImPLidE4pc0PYndsspra8iIaKIjbuz6/clqgiZGFTJaqwqb2fU91rJ/NBOBpFhKx125301zBFw9waY/LQaIKEO7exgj+u2pt3J1HG3yxX+Uusi+Ahx4aGCnqHw3QOjNJQUexVaFNu4sl4dWkhDRXFbMuz1rpYhVr8Z21zB7fY3jnIye51dvkgNKHQDE5u29KRXwWs8S6C8Tnc+U63dgzkVQErFNGstV5BetdgGWNMQon6b89rrKBnKJSX82gYY9ITSnBB+Zy4E7d8EonqIV2sAFrry9jelV+fMzShSzhAa53zne7Is88aPw9WTGtdGds7Bz2KKDNCkcN/py1ut9YdXfn1WcORaNauvwIrYBljjkEo4jS5B+MKWHMb8vMkyhiTvlD40AFwIO7YkGfXaIaj0UMqmcA5Gd+RZyfj4cjhXcJb6p2T8XwseBQEDi80t/eNMDQa8SiqqZeom395cQENFcX5t/9G9bDfaSZZAcsYc9RiTe7xXQFjCTffar+MMekbP3EbP82YWVNKMCDsPJhfx4ZIVA+pZAJoritjb+8wI+F8Ohk/dBRBcLpD1pYVsj3PjvfOyJCHfqct9U4FQT7tvxPnNovJ1xbYid0+M2nSNYnI+SLyZxHZICJbRGSriGzJRnDGGH8LTxg9C2B2bSkiVsAy2WW5yl9GE3Q9KgwGmFlTknfHhkQ14631ZajCzq78Gap94jxYMS315XnY2nF4C1as61w+tdYl+07ztQU2m10E0xny5Rbgw8ByIH+qYowxx2ziZIwAxQVBZlSV5N3B2fie5SofiXUnKwoefpKabwWsSEQJJmgBAOfapPnuHEq5bnyi1gmfta6M53fm11DtoYhSUnh4oQNge2f+tOwkapUEpyfKnSt2MxKOUFyQH0O1OxUhPmrBAnpU9X5VbVfVztgt45EZY3wvFD28GwU43WPy7STK+J7lKh9JdPE8OAWsnXl2bEg0IEJLbPCHPKpoSjSoETiFyT3dw2PfeT6IRPWw7mQ1ZYVUlhTkVW4bGxlyYgtWHrbATpzbLNPSKWA9KiJfF5HzRGRJ7JbpwETkMhFZLyKbRORjmV6fMebIhcKJ+zQ7/bfzJwmZnJD1XGV5KrlE82CBU/nS0T/KwEjYi7AyItE1WA0VRZQVBfPqOJjsZLylroxIVNl1MH9OxkOR6GHfqYjkXQtsomHaIX4kwTxqrYtkd5CLdLoInuP+vzTuOQVeMfXhOEQkCHwPuBTYBTwrIveo6ppMrdMYc+QS1dyCc3A+4I62VFqUH90LjO9lNVdZnkotlKSLYHOtc+K28+AgJ07Pj3mTEo0iGDsZz6frdcbnwTr0Ox2fC2uAOe79XBdO0jujtb6MdXv7PIgoM8JJWppb68fnN8sX4Wh2B7lIZ6Lhi7IRyARnA5tUdQuAiNwBXANY4jLGR0KRaMKJ+2KjLe3oGuSE6ZXZDsschzzIVZanUkjVRRCcrkf5UMCKRpWoclhrB0BbfTkb2vPwZHzCZ21zj/fbOgbghKyHlRFOq2SC3FZXzp/X7E/YapmLQgmGaQeoLy+iorggvwpYkex+Z0kLWCLyDlX9hYjcmOh1Vf1m5sJiFrAz7vEuxmsnY/FdD1wP0NLSksFQjDHJhJJM3Bc/UaEVsEwmeZirJs1TbnzHZa5KNvxzvk1iGlHnBDUoCVo7Gsp4ZF3+nIxHknQRbKgoorwoyLY8Ohl3Kg8P/87mNJQRiih7uododvflXBZxB7mYWJgUEVrry/JqPstQggnBMynVmmLtvJVJbp5S1R+r6lJVXdrY2Oh1OMYcl0IRpaggwTVYeTjakvEty1U+NBKbaLggwUABxQV5M9BFrNARTFDRNKe+fOxkPB+Eklyv45yMl+fV8T6SpPt7rOtcvhQ8QkkGLgGn62d+faeHd+XNpKQtWKr6I/f/z2YtmnG7gea4x7Pd54wxPpJs4r58O4ky/uVhrrI8lULsxK244PCT8XwaZXT8uqTEJ6gA2zoH8qq1I1HBY05DOWv29mY7pIwJJRh6Hxi7xmxb5wAXkvsVJuHI4ROCx8ypL+eBF/dlfYLeTAlleZCLpFtMRD4lInUpXn+FiFyZmbB4FlggInNEpAh4C3BPhtZljDlKI+HoYRexg3uBt40kaLLAw1xleSqFZKMIQn7NhRVxT1ATnYwfcm1SHogVmhN2h6x3ht8P58lQ7c6ACId/zmmVxZQVBfOmBSs81kUw8XeaT6NDJhp6P5NSDXLxAnCviAwDzwEHgBJgAXA68DDwpUwEpaphEfkA8CAQBG5V1dWZWJcx5uiFIlEqihMfRlrqyli/P38u8Da+5UmusjyVWigSJSCJT9xa6st4dH07qookOFnPJeMTtR7+OZqqiiktzJ9rkyJRJSAQSDKgRziq7OkepqU+D1rrkgyIEOsOmS+F5vEWrMStkuC01uXD6JDhSJRgkvOVTEjVRfBu4G4RWQCcD8wAeoFfANerakaLtKr6J+BPmVyHMebYhCKJW7DAOYl6ZG173lzgbfzJy1xleSq50XA04fWZAM21pYyEoxzoG2FaVUmWI5taw+61ZiWFiVvyW+vL8uZkPBSNJh0koNUtVG3tHMiLAlYoxZDecxrKWJsnQ7WPVRAknM8yv0aHDEUSD72fKekM074R2JiFWIwxOWY0yUTD4LRgjUai7O8dZmZNaZYjM8cby1X+Mpriuo3muJEEc76AFYoAUFKYeL6/tvpyNubJUO0joSjFSQsd43NhkePXJqlqypPxtvpyHlq9n3AkeYEzV4zGWrASVII2VOTXUO2jkeSVPpmQ23uGMcZToYhSmOSA1VqXfxMVGmPSk7J1O4+Gah8JOS0AxQVJClgN5ezsGhobbTCXpZo4vrHS6Q6ZD9cmjYSjRKJKWVHiNohYd8jdeTA65NBoGICyBF3n8m2o9qHRCKWF2esiaAUsY8xRGw5FDhslLGZ8QtHcP4kyxhyZwZHkJ+OzaksRyY8C1nDYacEqTtBFEKCt3mnJz4eh2gdDEcqSfKexk/EdeVChNjTqfKfJPmtsdMh8KHgMup+1NEULbL4M1T44Gk76nWaCFbCMMUetbzhMZUniGqGZNSUEA8L2rvw4OBtj0tc7HKaypDDha8UFQWZUleRHASvWRTBJC1asO2Q+jMQ2NBqmNEmrDsDs2rK8+JyDodQFrLHKw3z4rKMRSgoDSa+Tnl1Xyu7uIaJ50AI7OJq8giATJi1gichCEXlERF50Hy8SkU9lPjRjjJ9Fokr/SPKTqIJggFk1pezoyv0kZPzPcpW/9A2Hkla+gFPwyIfW7d4hp4tVVWnizzq71rn+NB+6k012gtpcV8qug4Oo5vbJeKzbXLLC5LTKYgqDwu68KGCFk3aFBKfQHIoo7X0jWYxq6kWiykg4mvRayUxIpwXrJ8DHgRCAqq7Cme/DGHMc6x92TyxSnEQ5XUasBctkheUqH+kdDqc8NrTUlbEzDypfugZGAagrL0r4+oxqpzvkroO5X5jsGhhN+jnBORkfGI1wcDCUxaimXme/+52WJf6sgYAwo7o0LwrNBwdC1JQmriSF+AqC3N5/J/udZkI6BawyVX1mwnPhTARjjMkd7X3DADRUFCddpjmPJhQ1vme5ykf29gwxvTr5CIHNdWXs6x0e62KXqzr7nZr92iQn40UFAZoqS/Ki61x73wiNlcmP97GT8VxvmYy11kyrSv5ZZ9WUsjsPCs37e4dTfs5m9zvN9f03dr7SlOKzTrV0ClgdIjIPUAAReQOwN6NRGWN8L1Zwil1jkEhrXRkHB0P0Dud2jabJCZarfKJnMET3YIjZtcmPDS15cm3S1o4BpleVpOx6NKOmJOcHuegbDtE1MMqsFFNuzKx2XtvfO5ytsDIilttSVRDMqi1lT3duf05wPmuqaVRir+X6Z40V+mdUZ2/KmHTGK3w/8GPgRBHZDWwF3pHRqIwxvrdyZzcBgQVNFUmXidWMdfSNUJXkWi1jpojlKp9YvqMLgEWzqpMu0xw3yuj8acmPIX63ancPC6dXplymoaI451t1Vu3qAeDkGVVJl6mvcFrxYt2xctXKnd201JWlzFn1FUV0DYyiqohkb/LaqbS3Z4j2vhFOmZn8d1pWVEBpYZCugdy+BmvFzh6CAeGESX6rUymdiYa3AJeISDkQUNX8mDHPGHPURsNR7lm5hyUttSmTUF25U8A6OJjbCdf4n+Uqf1BVfvn0DqpLC1nSWpt0ufGuR7lb8Fi5s5tN7f28/ZyWlMvVlxexYmd3doLKkN8v30VpYZCz59QlXSZ2fUtnDhew2vuGeWzDAd60tDnlcvXlRYxGovSNhHO28vD3y3cB8LKFqSeGrisvGrsuLReNhCPcu3IP582tz+ogF5MWsETkxgmPAXqA5aq6IjNhGWP86kDfCDfds5ptnYP895Unp1w2dpFwLh+cTW6wXOW9/pEw//PnDTy8tp2PvOqElCcz9RXFBMQ5nuSidft6+eAdz9NQUcQbzpydctm6cqe1IxpVAkmGw/arSFS55e9b+MPzu7n+wrmUJ5iQNqakMEhFcUHOHu/3dA/xb796HlX4p/PbUi4bqzzs6h/NuQKWqnLfqr185y+buOSkpklbkOsrinK20NwzFOITf3iB3d1DfPl1p2V13el0EVzq3u51H18JrAJuEJHfqurXMhWcMcY7o+Eo3UOj7D44xM6DQ2w9MMCy7V08vbWLcCTKJ644kYtPakr5HnVulxFrwTJZYLkqi1SdoZt3dA2y9cAA/9jcwV/WtdM3HOad57Zyw8vmpfz7YECoryjOmeGfI1Flw/4+nt3WxSNr23l84wHqyor4ybVLk05VEVNfUUwkqvQOh6hJMhiGXwyNRtjaMcCWjn5W7+nlvlV72Nk1xKUnN3HjpQsn/XvnZNz/36mqcnAwxNaOfja3D/DXDe08vLYdgG+95XTmNk5S6IhrrYtNPOxX4UiU3d1DbOkYYPXuHu5btZd1+/pYPLuar71h0aR/X19eREeOFJoPDoyypWOALQf6eXZbF/e/sI+B0TAfv/xELpykpW6qpVPAmg0sUdV+ABH5DPBH4EJgOXDESUtEbgLeCxxwn/qEqv7Jfe3jwHVABPigqj54pO9vTLpUFVWIqqK4/yvOjUNf06jzXFTdv3OXR3Gei3/N/btIdPy5iCrRqPO8c3OStk64H3EfR1WJRhMsp7H7SiR66HJj7x1VwlFlNBJlNBwl5P4/Go4yGlH3/ygh9//RcJTB0TC9w2F6h5xBKYZD0cO214nTK3nnua287ZwW5k2SgCCuBStHa79MTrFcNcVGwhF2HRxiR9cgOzoH2d45yI6uAedx1+Ahx4iGiiJeefJ03nVeK4uba9J6/2mVxb5qwYpElT3dQ2zvHGRr5wDbOwbY1jnAtk7n849GnM87q6aUf7toPu8+f05awz7Hn4z7oYAV+5yxE9GtHQNsOeDc39MzPphBQOD8+Q184vKTuOzU6Wlda+S37mRDoxG2dTqfb2tHP1s6BsY+b8/Q+OBLDRVFvOWsZq6/cG7KwVliYt+7X643U1UO9I+w9YDz+bZ2DLDZ/cw7ugYJRcbnJlvSUsOXX3cabzxzNgXByce6qysvZv0+//S4HglH2N456OyzHf3ud+vsv/FTBJQXBXnVqdO57oI5Ka8zy5R0CljTgPgjYAhoUtUhETmWI+P/qOo34p8QkZNx5i05BZgJPCwiC1U1t8dxPUrRqDIcjjAcijIUijAcijA0GmEkHCEUUcIRJRRxTp7DUed+OKKEo85JdNh9HIq6z0ei4yfv0Qkn6HGFgbHX4k/w3ZP6+GUOf68JBRL39dj9sdcSPcd4YSW+oDNe4Im956Hvf+jj+ALPhAJTkuWPF8GAUBQMUFQQoDAYoLggdl8oKghQFAxQWhRkenUJVSWFVJUWUlVSQFVpITOrS2muK2N2bWnK7iGJlBYFKS0MctAnSehIRKLKcCjCSDjKsPv7Gw5F3d+k83wo7Pz2wtHDf2+hSJSI+1powmuRaOy3FCsQM/abU7dAHZ1wP74AHf9bO+T+hN9k7P7Ewn+i3xgTnyPBbzQ6/tsZ/307/xN3/6y2Wu64/rxsf2WWq47CcCjitEJ1DLDNLVBs7RhgZ9cQe3qGDjlOlhYGaakro7W+nAsXNNJaX0ZLfbnzXF3ZEXd/a6zMfgtWJKps7xxgY3s/O7ucQuP2rkF2dg2y6+ChJ6IlhQHa6suZ11jOxSdO44TplZzVVsfs2tIjGtggNvhDR99IWhVTU2VwNMzm9gE2tvexqX28ILW1c4DR8HjhuLK4gLmN5Zwzt545DeXMbSxnToNzSzUJbSL15cVZv65OVdnXO8ym9n42tR96wh1fYASYUV3CnIZyrlo8gzkNFcx1P2dzXRnBI9h/xwtY2d1/R8JOC2Pss8YKU1sPDNA3Mj4rRVFBgDn15SyYVskrT5nufK8N5cxrrKD2COeCanC7CGZ7QI/O/hE2up9z84Hx73XXwUEn57imVRYzt7Gcy06dwTx3353bWEFzbWlaBchMSeeXczvwtIjc7T6+CvileyHxmimO5xrgDlUdAbaKyCbgbODJKV5P1qgqfSNh2ntHaO8dpr1vhAN9I3QPjdI7FKbHbS1wWg3C9A+HxwpTI+HDWxCOVTAgBEUQce4HRAjE3w+4j0UQEWf5gLu8TFhmwt+LCIEAFEgAEQi4P8SAu76ACAKIONdHyITXcP4lWN55HP+ajC0DgiRZ3/h6Ji4fcAORRMsf8p7j98X9rLH3i71H/HvG/+3EbRqQ8e0VkLjt6i43to0DiZeL3T/0vZxtfthy7vsUuwWqI0kcU62u3Nv+28OhCO29IxzoH+ZA3wgH+ked3+DgKH3DYfqGQ/QOhekdDo09HgpFDjnRmgoBgYJggMLA+O8q9rsJxvajid/xxO87cOhvM/5vCgNyyD429puUCb8bDv+NEXc/2W9s4u8jtr+P/3bHn2tOowY4AyxXTWIkHGHlzh5W7epm9Z5eXtzdw+YD/YecrNSVF9FaX8ZZbbW01M+mta7MLUiV0VhRPKUnWNMqi1m3N3M149GosqG9j2e3HWTlzm7W7+tjY3vfIS1vVSUFtNaXc/KMKi47dTotdWW01TsnadMqi6fkmqn62PU6GTwO9g6HWLmzmxU7ulmxs5t1+/oOmQi3ICC01Jcxt6Gcl53QOFawmNtYQUNF0ZR9rw0VRazc1T0l75WIqrKtc5AVOw+yYkc3K3f1sKm9n/64wkVlSQFzGys41y0wzjmGAmMysfkfM9l1bmg0wgu7e5zvdWc3q/f0sKNrvHAh4rSmzmko5/Vnzh77jHMayplZUzpleb++ooiRcJSB0QgVR1jJmq69PUM87+67K3d2s7G9/5DfS1lRkDkN5SxuruG1Z8xibmM5cxsqaGsom7SLrlfSGUXw8yLyAPAS96kbVHWZe//tx7DuD4jIu4BlwH+o6kFgFvBU3DK73OcOIyLXA9cDtLSkHsEnG0KRKBv297FmT69TE+g2Se/oGmRw9PBKzWBAqCopoLo01lpQyIzqUsqLg5QVFVBcGKC0MEhJYdD9P0CJ+7jYbXEoCDotEIXBAAVBoSDgPB57PuA8XxgMUBB3MmdMNtVXZL7LiKqyt2eY1Xt6Wb+vl22dg2zvHGB752DCGnIRqC4tpLKkgMpi5//mujIqSwqoKimktChIScH47664IPb7C1Bc6LxWXBj7HQoFAef3F/97i/0OncJPIOcubs81lqsS23ygnwdX7+OJTZ0s2941VriYXlXCqbOquPzU6cybVkFbfTltDeVUl2bvZKWxspiO/pEpHfyhvW+Yv6x1rqd5ZmsnvcPOiXd9eREnzaji7ee0cuL0ShY2VdJWX051WeY/b0OsBat/6lo7olHl+Z3dPLbhAI+tb2fV7p6x1sb50ypY2lbLW6c1M39aBfOnVdJaX0ZhFmrzGyqKp3xAj57BEI9tPMBj6w/w+MYDY91Ky4qCnDqrmtcvmcX8aRXMm1bB/GkVU14RkEhpUZCyouCU5jZVZf3+Pv663vmsy7Z3jVX0zaopZdHsaq5ePHPsc85rrMjKqHixCoKOvpEpK2ANjUb4x6YOHttwgL9uaGdnl1MZUBQMcPLMKl51ShPzGitY0FTJgmkVzKguybnz17S2lKo+KyLbgRIAEWlR1R2p/kZEHgamJ3jpk8APgM/j9FT5PHAz8J4jiBtV/THOnCcsXbo06529+kfCPL2lk79v6uD5Hd2s2ds71uReEBCa68qY01DOefPqmVFdwrTKEqZVFY/9X1lckHM7izFHo6GieGwW9akSiSqr9/TwxOZOntzcyapd3Yf0vW6qKqa1vpyXLXS6MTVVldBYWTx2qysr8rTrgMkMy1WOjv4RfrNsJ/es2MM699qJE6dX8tazWzhvbj1LWmvHauC91FhRTDiqHBwcpf4Y4hkcDXPfqr38dtlOlm0/iKpzQnrFaTM4q62Os9rqaK47sm59UynWnWwqWjs27u/jD8/v5u7nd7OnZ5iAwBkttfz7xQs4s7WWRbNrslpInqi+oohIVOkZCh1xV7R4o+Eof1m3nzuf382j6w4wGolSU1bIBfMbOH9+A6c317CwqdLT3hkNFcVTUmje3T3EXc/v5q7nd7OxvR9wfq/vOX8OZ7XVsbi5hsZK736vDe66OwdGjmlAj2hUeWJzJ394fhcPvriPgdEIpYVBzp9fz3vOn8MZLbWcNKOS4oLsDaWeSekM0341TlKZCbQDLcA6nL7nSanqJekEICI/Ae5zH+4G4icfmO0+5wsHB0a5/8V93LtyD89u6yIcVYoLApzeXMO157Vy2uwaTp1ZRUtdmZ28GeOqLy9izZ7eY36f0XCUf2zu4E+r9vLQmv1jFygvmFbBK0+ezimzqjhlZjUnzaicsm4gJndYroK1e3v58eNb+OOqvYxGopzZWsunrzyZy0+bzozqUq/DO8y0qhIA2vtGjqqAtb93mB8/voVfP7uT/pEwcxvL+fAlC7n05CZOnF7pm0rMgmCA2rLCox5dT1X528YOfvK3LfxtYwfBgHDhggY+evmJvGxhoy8GzoipH+s6N3JUBayewRC3P7Od257Yxv7eERori3nnea28etEMFs+u8bRANVHDMY6YuHJnNz/52xbuf3EfkahyVlstX3jNqVx6chNN7m/DD2KDtBzoO7oKguFQhDuf381P/raFLQcGqCwu4MpFM7ly8QzOnlOXNwWqidI5C/k8cC7wsKqeISIXAe84lpWKyAxV3es+fC3wonv/Hpw+89/ESZILgGeOZV3HSlVZtv0gt/59K39es59wVJnbWM4/v3QuL13QwJmttVmduMyYXNNQWUznwMhRXyC7p3uIXzy1nTue3UnXwCiVxQVcenITLz9xGufOrWNapX8SkfHUcZurtnUM8M0/b+DeVXsoLyrgbee08I5zWyed38ZrsVr5A30jnDQj/b/rGhjlWw9v4I5ndhJR5erFM3n7OS2c2Vrrm0LVRA0VxXQcxQnqs9u6+MIf17JyZzfTKov5yKtO4E1Lmz1t0UhlvDvkKAtSz+JxiOFQhFv/sZUfPLqZvpEwF8xv4CuvW8RLFzT4tsK6vqKYHZ1HPqDHxv19fOX+dTyyrp3K4gKuu2AO7zinlZZ6T65dnVRjXAvWkYhEld8v38U3HlpPe98Ip86q4ltvPp3LTp1+XJw3p1PACqlqp4gERCSgqo+KyLeOcb1fE5HTcbpdbAP+BUBVV4vIb3AuSA4D7/dqVCZV5fGNHXzzofWs3NVDdWkh/3R+G9ecPotTZlb59iBujN80VBQTiii9Q+Ejut5hR+cg33p4A3etcBoGLj6piTctbebChQ15W+Nljslxl6tGw1F++Nhm/vcvmwgGhPe9fB7Xv3ReVq4rmgrT3BO3dEcSjESV25/ezs0PbaB/JMybz2rmX182j+Y6f56YxjvS+aHa+4a56Z7V/OmFfTRVFfOV153Ga5fM8v2xL9b19Eg+61/W7ee/71rN7u4hLjlpGh++dKEnw2ofqYaKYp7bfjDt5QdGwnz9wfX87MltlBcV8F+XncC7zmvL2MARU2Wsi+sRVBCs2NnNx36/inX7+jijpYZvvfl0zptXf1ydO6fzrXaLSAXwOHC7iLQDA8eyUlV9Z4rXvgh88Vje/1it39fHZ+9dzRObO2muK+WLrz2V154xy7odGXMUYjWaB/pH0jrx6xkK8c2H1nP70zsoCArXXTCHa1/SltbcJOa4dlzlqk3tfbz/9udZv7+PKxfN4NNXnZxzrbnxLViT2d09xI2/XsHTW7t4ybx6brr6FBY2VWY6xCnTUFHM6jS7St+zcg+fvvtFBkcj3HjpQt770rmUFvm7YBVTXz4+JP1keoZCfPbe1fzhud2c0FTJL997Di+Z15DpEKdMY0URXYOjRKI6adfFp7Z08pHfrWTXwSHeeW4rH7pkYVpzqPlBYTBATZpdXEfCEb7zyEZ+8NfNNFWV8N23nsGVi2YcVwWrmHRKDNcAQ8CHcUZiqgY+m8mgvBKKRPnBXzfz3b9spKK4gJuuOpm3ndNKUYE/m6eNyQUNcX3yJ+uydP8Le/nMPavp6B/hbee08MFXLBi7TsOYSRw3ueqelXv42O9XUVoY5JZrl3LxSUfQF8tHyooKqCgumHQQnIdW7+M/fruSaFT52hsW8cYzZ+fcCVs6AyJEosoX/riG//vHNhY313DzGxf7vpvnRLVlRQRk8snlt3UM8J6fPsv2rkH+7RXz+bdXLMi5c636imJUnS6rqbps/uzJbdx0z2pa6sr49fXncfacuixGOTXqy4sm3X87+0f4l58vZ9n2g7xp6Ww+deXJVPl0CPVsSKeA9WlV/SgQBW4DEJGvAh/NZGDZtq9nmPfdvpzndnRz1eKZ3HTVycc0qpExxhFLPPt7k59EjYajfPbe1dz+9A5OmVnFLdeexWmz/d9FxPhK3ucqVeX7f93M1x9cz9LWWv73bUuYXp3bFRCNlcVJW7BUlR885nze02ZV8923nkFr/dGPYualaVXFY/PsJZq3Z2AkzAd/9TyPrGvnn85v45NXnOTba49SCQSEaZUl7OlOfrx/ZmsX1/98GQL86r3n5mSBAxgbiGJP91DCAlYkqnz+vjX89IltXHJSE99+y+mU+7w7YDJNVam/003t/bznp8+yv3eY/33bGVy5aGYWo/OndL7pSzk8QV2e4Lmc9fSWTt7/y+cZHA3z3beewVWLbccwZqq01JURENh8IHFvrf29w/zrL5zKjX952Vw+8soTcvLEwngur3NVNKp83m3duHrxTL7xxsU5V+OfSGNFccJrsEbCET7++xf4w/O7uWrxTL7+hkU5fWH8/EanJWrzgQFOb6455LW9PUNc99NlrNvXy+evOYV3nteW/QCn0Lxp5Ww60J/wtTuf38VHf/cCs2tLufXdZx3TsN9emz/NiX3zgX4WT/hO+90C81/WtfPPF8zh41ec5KsREI/UvMYK7lqxO+FgVU9s6uCGXyynqCDAr64/lyUttR5F6S9JC1gi8q/A+4C5IrIq7qVK4B+ZDiybHt94gKqSAn753nNyqk+3MbmgpDBIc10Zm9sPT7jLtnXxr7c/x8BImO+9bQmvXnQEQ4kZw/GTq3qHQ/zFbd3471efnDcTV7fWl/Hw2v2HnLj1DIW4/mfLeHprFx++ZCEfvHh+znUJnCjW1W/j/r5DClgv7Orhn3/2LAMjEW5991m8/IRpHkU4deY3VvD75w49GVdV/ufPG/jOXzZx3tx6fviOM3NmMJZkWuvLKQgImybktj3dQ7znp8+ysb2fL7zmVN5xbqtHEU6d+dMq6BsO0943csgQ8r9ZtpNP/OEF5jSUc+u7z8qJAWeyJVUL1i+B+4EvAx+Le75PVbsyGlWW3XjpCdzwsnkJm+2NMcfuxOmVrNzVPZZwVZVfPLWdz967htm1pfziunM4YbpVbpijclzkqpqyIu55/wVUlebXJPVnzanjt8t3sWF/PydMr2R39xD/9H/PsLVjgG+9+XRec8Ysr0OcEi11ZVQWF7B8+0HeuNSZQu3B1fv40B0rqCsv4nf/ejYnTq/yOMqpccqsam57cjvr9vVx0owqhkMRPvK7Vdy7cg9vWjqbL7zmtLxofS0MBjhxRiXLto2PJLhyZzf//LNlDI9G+L93n8WFCxs9jHDqnDrL2TeXbTvIqxfNIBpVvv7Qen7w1828dEED33v7kuP6eqtEUhWwgkAv8P6JL4hIXT4lrmBArHBlTAa9dEEjD67ez+o9vbQ1lPPJO1/g7hV7uPjEaXzzzadTXWq/P3PUjptcles1/om8bGEjBQHhe49u4sKFjXzhj2uIRJTb/ulsXjI/d0aUm0xBMMCFCxt5aM1+bnzlMD9/cjvf/csmFs+u5ifXLs25ESBTefnCRkTgd8t38dazW/jwr1fwwu4e/uuyE/jXl83LqwqCi06Yxvf/uplN7f08vbWTz967hsaKYm5/X371iDq9uZbaskJ+t3wnS9tq+fgfXuAv69p52zktfPbqUyi0bv2HEVVN/ILIVpy5PwAm/hpUVedmMrAjsXTpUl22bJnXYRhjkjg4MMqFX3+UiuICRsNRDg6O8uFLFvL+i+bnTVcnM7VEZLmqLk1jOctVOe4r96/jh49tBuC0WdV8+y2nM7cxt0bPS8fKnd289vv/IOrura9fMpsvvvbUnL62LJn//O1Kfrd8FwCVJQX8z5tO55KTc3O0y1Tae4e5+ObH6BsJA3D+/Hq++9YlOTME+5H4wV8389UH1gFQFAzw31eexDvObc2rAvPRSJarkhawcoklLWP878nNnXzr4Q3UlhVxw8vnHXahtzHx0i1g5RLLVYmpKs9s7UKBs9vq8rrS5ZmtXfx94wFeMr+Bc+fWex1OxoyEI/zy6R2MhqO8/szZY9N15KMN+/u4b+UeTp5ZzatOacrbAkc0qtz5/G72dA9x9ekzc3ZEz6l2TAUsEbkauNB9+FdVvW+K4zsmlrSMMSa/HE0By3KVMcaYbEqWqybtNCkiXwH+HVjj3v5dRL409SEaY4wxR8dylTHGGL9IZx6sK4DTVTUKICK3Ac8Dn8hkYMYYY8wRsFxljDHGF9KdUroGiI3EVJ2ZUI7e8uXLO0Rk+zG+TQPQMRXxZEGuxJorcULuxJorcULuxJorcULuxDoVcR7N5DE1WK7yi1yJE3In1lyJE3In1lyJE3In1lyJEzKYq9IpYH0ZeF5EHsUZoelCDp1rxHOqeswTDYjIsly5oDpXYs2VOCF3Ys2VOCF3Ys2VOCF3YvUoTstVPpIrcULuxJorcULuxJorcULuxJorcUJmY01awBKR7wG/VNVfichfgbPclz6qqvsyEYwxxhhzJCxXGWOM8ZtULVgbgG+IyAzgN8CvVPX57IRljDHGpMVylTHGGF9JOoqgqn5bVc8DXgZ0AreKyDoR+YyILMxahNnzY68DOAK5EmuuxAm5E2uuxAm5E2uuxAm5E2vW4rRc5Vu5EifkTqy5EifkTqy5EifkTqy5EidkMNYjmmhYRM4AbgUWqWr+TT1ujDEm51muMsYY46V05sEqEJGrROR24H5gPfC6jEdmjDHGpMlylTHGGL9I2oIlIpcCb8WZW+QZ4A7gblUdyF54xhhjTHKWq4wxxvhNqhasjwNPACep6tWq+st8TVgicpmIrBeRTSLim2F9RaRZRB4VkTUislpE/t19/iYR2S0iK9zbFV7HCiAi20TkBTemZe5zdSLyZxHZ6P5f63GMJ8RttxUi0isiH/LLNhWRW0WkXURejHsu4TYUx3fc/XaViCzxOM6vu9e+rBKRO0Wkxn2+TUSG4rbtD7MVZ4pYk37fIvJxd5uuF5FXeRznr+Ni3CYiK9znPdumKY5LXu2nx0Wu8muegtzKVbmQp9yYfJurciVPpYjVd7kqV/JUilgtV02kqsf1DQgCm4G5QBGwEjjZ67jc2GYAS9z7lTijZZ0M3AT8p9fxJYh3G9Aw4bmvAR9z738M+KrXcU747vfhTBLni22KM3fPEuDFybYhTo39/Thz/pwLPO1xnK8ECtz7X42Lsy1+OZ9s04Tft/v7WgkUA3PcY0PQqzgnvH4z8Gmvt2mK45Lv9tN8ufk5T02yT/jiuDoh1pzKU3Hfv29yVa7kqRSx+i5X5UqeShbrhNctV6lOfg3WceBsYJOqblHVUZzuJdd4HBMAqrpXVZ9z7/cBa4FZ3kZ1xK4BbnPv3wa8xrtQDnMxsFlVt3sdSIyqPg50TXg62Ta8BviZOp4CasQZqtqTOFX1IVUNuw+fAmZnI5bJJNmmyVwD3KGqI6q6FdiEc4zIuFRxiogAbwJ+lY1YUklxXPLdfppHfJunIC9ylZ/zFPgsV+VKnoLcyVW5kqfAclW6rIDlbOydcY934cPEICJtwBnA0+5TH3CbMG/1Q3cGlwIPichyEbnefa5JVfe69/cBTd6EltBbOPQg4MdtCsm3oZ/33ffg1ATFzBGR50XkMRF5qVdBTZDo+/brNn0psF9VN8Y95/k2nXBcysX9NFfkzDbMgVyVa3kKciNX5erv3++5KpfyFFiuGmMFrBwgIhXA74EPqWov8ANgHnA6sBenOdYPLlDVJcDlwPtF5ML4F9Vpg01/XoAMEpEi4Grgt+5Tft2mh/DTNkxGRD4JhIHb3af2Ai2qegZwI/BLEanyKj5XTnzfcd7KoSdYnm/TBMelMbmwn5qplyO5KmfyFORmrvLbNkwmB3KV77/rBCxXuayABbuB5rjHs93nfEFECnF2jNtV9Q8AqrpfVSOqGgV+QhabhlNR1d3u/+3AnThx7Y81sbr/t3sX4SEuB55T1f3g323qSrYNfbfvisi7gSuBt7sHLtxuDJ3u/eU4/cU9nQA2xfftx21agDPc+K9jz3m9TRMdl8ih/TQH+X4b5kquyrE8BbmTq3Lq958LuSqX8hRYrprICljwLLBAROa4NUVvAe7xOCZgrC/rLcBaVf1m3PPxfUJfC7w48W+zTUTKRaQydh/nItIXcbblte5i1wJ3exPhYQ6pZfHjNo2TbBveA7zLHfnmXKAnrtk760TkMuC/gKtVdTDu+UYRCbr35wILgC3eRDkWU7Lv+x7gLSJSLCJzcGJ9JtvxTXAJsE5Vd8We8HKbJjsukSP7aY7ybZ6C3MlVOZinIHdyVc78/nMlV+VYngLLVYdSD0b28NsNZ+SQDTgl6096HU9cXBfgNF2uAla4tyuAnwMvuM/fA8zwQaxzcUa1WQmsjm1HoB54BNgIPAzU+SDWcqATqI57zhfbFCeR7gVCOP1/r0u2DXFGuvmeu9++ACz1OM5NOP2XY/vqD91lX+/uEyuA54CrfLBNk37fwCfdbboeuNzLON3nfwrcMGFZz7ZpiuOS7/bTfLrh0zw1yT7hi+NqXJw5k6fcuHyZq5IcU335+08Sq+9yVZI4fZenksXqPv9TLFeN3ZJONGyMMcYYY4wx5shYF0FjjDHGGGOMmSJWwDLGGGOMMcaYKWIFLGOMMcYYY4yZIlbAMsYYY4wxxpgpYgUsY4wxxhhjjJkiVsAyxhhjjDHGmCliBSxjjpCI1IvICve2T0R2u/f7ReT7GVrnh0TkXe79z4nIJZlYT4L1Xikin8vGuowxxkwNy1PGeMvmwTLmGIjITUC/qn4jg+sowJmgb4mqhjO1niTrFnfd52vcjPfGGGNyg+UpY7LPWrCMmSIi8nIRuc+9f5OI3CYifxOR7SLyOhH5moi8ICIPiEihu9yZIvKYiCwXkQdFZEaCt34F8FwsaYnIT0XkDe79bSLyWRF5zn3vExPE9W4RuUtE/uwu/wERuVFEnheRp0Skzl3ugyKyRkRWicgdAOrUwPwVuDIDm8wYY0wWWZ4yJjusgGVM5szDSTpXA78AHlXV04Ah4NVu8vou8AZVPRO4Ffhigvc5H1ieYj0dqroE+AHwn0mWORV4HXCWu45BVT0DeBJ4l7vMx4AzVHURcEPc3y4DXjrJZzXGGJN7LE8ZkwEFXgdgTB67X1VDIvICEAQecJ9/AWgDTsBJKH92ejgQBPYmeJ8ZwNoU6/mD+/9ynOSUyKOq2gf0iUgPcG9cLIvc+6uA20XkLuCuuL9tB2amWL8xxpjcZHnKmAywApYxmTMCoKpREQnp+AWPUZzfngCrVfW8Sd5nCCiZbD1AhOS/6ZG4+9G4x7FYAF4NXAhcBXxSRE5zu3uUuDEYY4zJL5anjMkA6yJojHfWA40ich6AiBSKyCkJllsLzM9kICISAJpV9VHgo0A1UOG+vBB4MZPrN8YY40uWp4w5ClbAMsYjqjoKvAH4qoisBFYAL0mw6P04NXaZFAR+4XYTeR74jqp2u69dBPwxw+s3xhjjM5anjDk6Nky7MTlARO4E/ktVN2Z5vU3AL1X14myu1xhjTG6xPGXMOCtgGZMDROQEoElVH8/yes8CQqq6IpvrNcYYk1ssTxkzzgpYxhhjjDHGGDNF7BosY4wxxhhjjJkiVsAyxhhjjDHGmCliBSxjjDHGGGOMmSJWwDLGGGOMMcaYKWIFLGOMMcYYY4yZIlbAMsYYY4wxxpgpYgUsY4wxxhhjjJkiVsAyxhhjjDHGmCliBSxjjDHGGGOMmSJWwDJ5R0TuF5FrPY6hTURURAq8jMMYY4w/Wa4yJn9ZAcvkBBHZJiKXpLOsql6uqrcd4/puEpFfHMt7pLGOt4nIMhHpF5G9brK9IJPrTJeIvFtE/p6B9y0WkVtEZLuI9InIChG5fJK/+bCI7BORXhG5VUSKpzouY4yZCparsssvucqNI+Juo9jt5VMdl8kdVsAyxgMiciPwLeBLQBPQAnwfuOYo3uuwmkcf10YWADuBlwHVwKeA34hIW6KFReRVwMeAi4FWYC7w2axEaowxxznLVenlKteTqloRd/tr5sM0vqWqdrOb72/ANuAS9/67gb8D3wAOAluBy+OW/Svwz3GP3wOsdZd9EGiNe+0U4M9AF7Af+ARwGTAKhIB+YKW7bDVwC7AX2A18AQi6rwXdeDqALcD7AQUKEnyWavd935ji8/4U+ELc45cDuyZsj48Cq4ARYL67vuuAHcDjaXx2BW4ANgLdwPcAAU4ChoGIG2d3hr/bVcDrk7z2S+BLcY8vBvZ5vT/azW52s1uim+Wq4zZXvRv4u9f7n938c7MWLJOrzgHWAw3A14BbREQmLiQi1+AkotcBjcDfgF+5r1UCDwMPADNxDvyPqOoDOLV1v1anFmqx+3Y/BcLucmcArwT+2X3tvcCV7vNLgTekiP08oAS48yg+d7y3Aq8Gaty4wKltOwl4VarPHudK4CxgEfAm4FWquhYnmcVq42oSrVxEvi8i3Uluq9L5ACLSBCwEVidZ5BRgZdzjlUCTiNSn8/7GGOMxy1XHR64COENEOkRkg4j8t49b50wWWAHL5KrtqvoTVY0AtwEzcLovTHQD8GVVXauqYZxkdLqItOIcsPep6s2qOqyqfar6dKKVuQfXK4APqeqAqrYD/wO8xV3kTcC3VHWnqnYBX04Rez3Q4cZzLL7jrm8o7rmb3PiGSP3ZY76iqt2qugN4FDg93ZWr6vtUtSbJbdFkfy8ihcDtwG2qui7JYhVAT9zj2P3KdOM0xhgPWa46PnLV48CpwDTg9TiFyo+kG6PJP1bAMrlqX+yOqg66dysSLNcKfDtWW4XTvUKAWUAzsDnN9bUChcDeuPf6Ec7BFJxaxZ1xy29P8V6dQMMU1G7tnOS5VJ89Zl/c/UESb8MpJyIB4Oc43Vs+kGLRfqAq7nHsfl+GQjPGmKlkueo4yFWqukVVt6pqVFVfAD5H6tZBk+esgGXy3U7gXybUWJWq6hPua3OT/J0meJ8RoCHufapU9RT39b04STCmJUVMT7rv9ZoUywwAZXGPp6cR48TnUn32ySR670OIyA8njJgUf0vajcLtHnMLTi3u61U1lGI1q4HFcY8XA/tVtTONz2CMMbnCclVu56pEcR3WFdQcP6yAZfLdD4GPi8gpACJSLSJvdF+7D5ghIh9yh2StFJFz3Nf2A21u7RWquhd4CLhZRKpEJCAi80TkZe7yvwE+KCKzRaQWZ+S7hFS1B/g08D0ReY2IlIlIoYhcLiJfcxdbAVwhInUiMh340BR/9snsB2aLSFGKz3GDHjpiUvztlGR/B/wAp+/9VRO6jCTyM+A6ETlZRGpwRnL6aZqfwRhjcoXlqhzOVe42aXLvnwj8N3B3mp/B5CErYJm8pqp3Al8F7hCRXuBF4HL3tT7gUuAqnO4HG4GL3D/9rft/p4g8595/F1AErMEZ6eh3OP3pAX6CM/LRSuA54A+TxHUzcCNOgeEATg3eB4C73EV+7r7XNpxk+esj/OgpP3sa/oLTerRPRDqOdN3JuH3q/wWn//y+uFrEt7uvt7iPW9zP8ADOheGP4ow4tR34zFTFY4wxfmC5KrdzFc4It6tEZAD4E852/dJUxWNyj6imbl0VkWnA+Tj9dodwdvxlqhrNfHjGHDkReRz4f6r6M69jMcZkh+Uqk2ssVxmTv5JeuCgiF+E0HdcBzwPtOMN1vgaYJyK/A25W1d4sxGlMWkSkDKev+lavYzHGZJ7lKpOLLFcZk99SjQxzBfBed0jMQ7gjylyJ02T9+wzFZswRcWuwNwH34kzuaIzJf5arTE6xXGVM/kvaRVBEpqvqvoQvGmOMMT5gucoYY4zfpBrkYoWIPCwi17mjdxljjDF+Y7nKGGOMr6RqwQoCl+DM/n0F8BTwK+DuNIZWzqqGhgZta2vzOgxjjDFTZPny5R2q2jjZcparjDHGeCVZrpp0FEEAd36By3ES2EXAI6r69mMNSkS2AX1ABAir6lIRqcMZ5rMNZ9jPN6nqwVTvs3TpUl22bNmxhmOMMcYnRGS5qi49wr+xXGWMMSZrkuWqtObBUtVRnPkU1gK9OBOvTZWLVPX0uOA+hpMUFwCPkGISPGOMMSbGcpUxxhg/SFnAEpFmEfmIO3ndfe7yV6vqkgzGdA1wm3v/NpyhdvPWpvZ+lm3rIhzJnalalm3rYvn2g0Sjk7d++sWLu3t4YnMHo+Hc2c5bDvTz2IYDDI6GvQ4lbft6hnlk7X56BkNeh5K2nsEQf16zn/beYa9DSdtwKMLDa/azvXPA61B8wXLV1OgfCfOPTR30Dfvr9xuNKn9d386m9n6vQzlM18Aoj6zdz8GBUa9DOcz6fX08samDkM/OL1SVv2/sYO1e/82cMByK8Oi6dg70jXgdymF2dA7y+IYDDIciXodymKe2dLJqVzfp9IrLpliu3NOd/d7iqebBegKYBfwGZwjc5RlYvwIPiYgCP1LVHwNNqrrXfX0f0JQkvuuB6wFaWloSLeJ74UiU1//gCXqGQixuruEX151NZUmh12GldKBvhDf88EkAzp9fzy3XnkVJYdDjqFLrHwnz+h88wUg4yglNlfzyvedQX1HsdViTeuctz7C7e4gZ1SX8/LpzmD+twuuQJnXjb1bwxOZOKksK+Mm7lnLu3HqvQ5rUVx5Yy6+e2UlRMMDX37iIa06f5XVIk/rpE9v4yv3rAPjoZSfyry+f53FE3rFcNXW+/Ke13P70DmrLCvm/fzqb05trvA4JgAdW7+N9tz8HwL9cOJePXzGVDZPH5jP3rObelXsoLwryg3ecyYULJ71sMGte9/1/MDAaYWFTBb/453OYVlnidUgA/H1TB++85RkA3ry0ma+8/jRExOOoHF/+01pue3I7RcEA33zzYq5cNNPrkMa889an2d45yOzaUn75z+fSUl/mdUgArN7Tw1t+/BQArzqlie+9bQkFwbQ6yGXcDx/bzLce3kgwIHzumlN4+zmtWVt3qi3wMaBNVT+SoYQFcIFbw3g58H4RuTD+RXWKwgmLw6r6Y1VdqqpLGxv9c0A7Eh39o2OFqxd39/D1B9d7HdKk+kec1pTFzTX8Y1Mn33lko8cRTW5/7zAj4SgXnziNbZ0DfOae1V6HNKlIVNndPcSZrbWMhqPc+JsVvqsZSmR75yDzp1UwrbKYD/7qeV/WtE20o2uQmrJCTm+u4b9+t4q9Pb4aFyGh7Z2DALz6tBl89YF1PL8j5aU/+c5y1RTZ0TVIUUGA8uICPvzrFUR80kthX4/TunzZKdP50eNbeHR9u8cRjdvROUBjZTHNdWX8+x3Pj+VIr0WjysBohBOaKtnRNchn71njdUhj9sZ9n79etpO7Vuz2OKJx7X0jFASE02ZX85HfrvJVz4YDfSPMn1ZB71CI//r9Sq/DGbOn29lGrzy5iQdX7+enT2zzNqA4+93v74L5DXzm7tVZbQVPWsBS1cdVVUVkjoh8U0T+ICL3xG5TsXJV3e3+3w7cCZwN7BeRGQDu//45kk6xWLP9289p4Y1nzuaOZ3f6rmvGRLGYr3/pXK5cNIOfPbnd9yfR4YhzkvD6M2dz3QVz+OMLe9l1cNDjqFKLbeeLT5rGRy87kVW7enhyS6fHUU0uHI1yVlstX3ztabT3jXDX8/5JnMmEwsqJ0yu5+U2LCUeVnz253euQJhWORJlVU8rX3rCI2rJCfvK3LV6H5BnLVVNnNBzl9OYaPnnFSWztGODRdf74SOGoczz8yutPY1ZNKT953D/7eyiiLJ5dzVdev4iDgyF+v3yX1yEBEHK32dWnz+S6C+bwpxf3stuDblKJxHLyZ64+mROnV/Ljx7d6HNG4UCTKwqZKbn7jYobDEX7xlH/yQTiiXHJSEx+6ZCFPbenihV09XocEjJ+vfPjShbxkXj3/729bfXMJSSiizKwu4ZtvWkwwIPzfP7K3r6XThncXzghJ3wVujrsdExEpF5HK2H3glcCLwD3Ate5i1wJ3H+u6/Cq2UxYFA7zhzNmMhqP8xScJLZnYNUyFQeHNZzXTPxLmsQ0HPI4qtdh2LgwGePNZzajCAy/6e17S0bh946rFMykpDPg+ZnAOZgWBAOfMqaO1vow/vrB38j/y2GgkSlFBkOa6Ml4yr577X9jr+9bCUCRKQVAoLy7gykUzeXTdAYZG/V3RkQV3YbnqmISjSlEwwCUnN1FZUsBDa/xxzAm5J+QlhUFev2QWT23p9M01T+FolIJAgNOba1jYVMGffHLMi22zomCAt5zVgirct3KPx1E5YgXmwmCANy1tZu3eXt9cTxqKKIVBoa2hnPPm1vPAan/8BlSVUDRKYVB4/ZmzKQgIf3rRL/vaoedY+3qHWbGr29ugXOFIlIJggPqKYi51W9iyVfhLp4A1rKrfUdVHVfWx2G0K1t0E/F1EVgLPAH9U1QeArwCXishGnLlNvjIF6/Kl2AGwMBhgSUstNWWFPLHJ360UYz+kggDnza2nvCjIPzZ1eBxVarHCSkFQaK0vZ2FThf8LhW5BtqggQGlRkJcuaOSv6/0dMzhxFwYDiAiXntTE01u6GAn7+8Q/FIlSFHT6/7/y5Ca2dQ6OdcHzK+ckwDl8X3pyE0OhCM9u6/I4Ks9ZrjpGsYJ7YTDAhQsa+ftGfxzb40/gLj6piajC4xv9cTwMR5QC9/hx6clNPLutiwEfdBOM5ZCCoNBcV8b8aRU8sdkf5xdj5z6BAJec5Fy66Jf8Fo5Gx64fesWJ09iwv98XLX+RqKLq/AaqSwtZ0lrL4z45jwmPncsKLz9hGgHxz/cZio7/Pi85qYmO/hFW78nO4CrpFLC+LSKfEZHzRGRJ7HasK1bVLaq62L2doqpfdJ/vVNWLVXWBql6iqnl71hCKO/EPBIQzmmt4zufXUsRasIqCAQqCAZa01vLsNn/HHI6ryQNY2lbHih3dvmnCTmQ07oQC4Ky2WnZ0DdLR77+RjeLFatjA2c6jkSgv7vbfSFHxRt1CITgxA77/HYYi4zGf0VJDQPwfcxZYrjpG8b+FJa217OkZpr3P+2tQwhElIBAMCKfMrKK0MMjzO7q9DguIHfPGjx9RhZU+qL0PTcghL5lXz7PbunxxXV047tynpb6M6VUlvrmO1OmF4eSw2CBNz233Praw+73FCgsvmVfPmr29vrjmL9YiWeAW/k6cXuWb7zMciVIYcH4DZ8/Jbn5Pp4B1GvBenNq5WJeLb2QyqONFfBdBgCUttWxs76fXx9dhjXU7KHBiPrO1lnX7en1RY5fMWEHWPWie2VJL30iYjT4c8jcmFB5v3QQ4o6UWwDcnFcnEt6wsaa0B/JGcUglFomP788KmSiqKC3xfWHEKWM7+XFlSyAnTq1ju8+2cBZarjlGsiyDAotnVAKza6f11HqG4VoWCYIDTZlf7ohADbguWm1uWNPvnOB2KHlqxuHh2DYOjEbZ2eN8VL1ZYiOWKxc3VrPTR9USxfHDC9EqKCgKs8sG+NvF8cdHsalRhTZZaY1IZb5F0fgent9SwYqc/KrHjW5hnVJfQWFnMyp3dWVl3OgWsNwJzVfVlqnqRe3tFpgM7HkyskThpRhUAG/f7+MR/Qq3YSTOqUMXfhZW4bo0Ap85yThzW7fP+wJTM2DVYsZhnViPij4NpMtGoEolrjp9WWUJTVTFrfbyd4dBCYTAgnDyzirV7+zyOKrX4mAFOzYGYs8By1TGKdREEOGVmFSJkrTtNKuGIjp28ASyeXc3qPb2+mD8yFNGxwl91WSGt9WWs8cH8TrEugoUFh55f+CK2yPi13ACLZtewtWPAF5XL8QXmwmCAk2dUscoHhb9YISYWW+w85oXd3sc23iLpFv5mVdM3HGanDwYTc7oIOnGJCItnV7MqS9ssnQLWi0BNhuM4Lo0dAIPjtecAm9r9e6I0OuHAeIIb84Z9/o05NKGL4JyGcgoCwob9fo45VlvlbOfSoiDNtWVs8PG+EYoeuj+Ds0/7ucIAYCSuWxTAwqYKNu7v8/VAF6OR6FiiBWc7d/SP+ObCf49YrjpG4biCe1lRAbNqStl8wPvfb+xC9ZgFTZWMhqPsOuj9tTHhuG7RAAumOccPr4333HC22/xpFRQGxReVdKFIlGBAxua+OmHs3Mf7fS00YV87cXqlL+IKT6gonlbptMb4YbLmiY0FC/z0fYbHr7EGJ1du6xjIyuTb6RSwaoB1IvLgVA99e7wLjTWTO1/+7NpSSgoDvj4hndhM3VJXRklhgPU+SCjJxF/rBk6rUFtDORt8vJ1j17rFkiM4iXuTj2OeWJAFJ6lvau/3RVeBZOIHuQBYMK2S3uEw7X3+vd4tHNeNBWB+kzMJtZ9bkrOgBstVx2Q0cmhhYW5jBVs6vN+nQlE9JK7YpOt+OIELuyOnxsyfVsnWLJ3ApTLxOt6iggDzGit8UbEY30oEPvs+47rJghNb58Co55VXY99n3L42r7GcLT6oAIkftATGv08/5KPYKJ8x86dVEI5qVgayKkhjmc9kPIrj1MQWrEBAmD+tgg0+2CmTmdhFMBAQFkyr9MVBO5mJMYPTSuHnLlVjfdQLDq21fXzjgcNqc/0iftSqmIVNlQyFIuzuHqK5zh+zzk8UietCAE5BFpyuuk1VJV6FlVJowglKrPV7w/6+sQt5j0OWq45R/OAp4JzAPbu1i2hUCcTtb9kWjhx6kjSv0T0hP9DPJTR5FRZw6PWQ4OSWUETHJl33ytjgTgXjsc1pKGe9D3qbTOziPLu2lKJggM0+OPeJ7yYL4/va5gP9LC337tg6NlJfwaEVIH6YFiA8oRK7urSQpqpiXzQWhCJKSWHiwnymf5+TnqXFD3c7xUPfHvfGRl6JSxxzGyrY5oOLUJMZG3wh7sS/raHc18NaT6xdAZjfWMH2zoGxliK/iY30NLGWLxRRtnf5c1uHoof2w4a4g5kPatmScWq44rZzU+wA7P2JSDITu7HMrC6hrCjoi+5cXrFcdezCE0585zVWMBSKsK/X25EEQxE95MSyurSQxspi37R4FPiwdS1RxWJbQzk7ugY9v3bNGQp9fJsVBAPMaSj3fJtBohbJ8QKWlyZ2+QSY21BO92CILo9b10JJzlf8kEPD0YmVRtn7Pv1XDX4cGU1Qw9RSV8bu7iHPD4DJTLwGC6Ct3onZ6y4RyUSih7estNSXE1V8Mb9FIrHCdzBw6HYG2OHTwmx4wkhCAK11/o4ZnMJs/HZurCimrCjo24IsHN6NRURoqSvz9XY2/jc6ofZ+bkM5gOcjz4XihlqO8UP3KFV3YJ+42FrrnG22o8vbbTaa4IR8Tn054ah6nvdCEwoxAPOmlbPFB5XLE1skZ9aUUlwQYPMBr38Dh468COOFBa9/B2H3muDYNXUAbfXlvsihE7ujlhcXMKO6xApY+S6c4ADYUldGJKrs7fF+7pFEYoWo4mBw7LlYzLt9cMFxIuEEtSutbmHFL7PHT5SoBaslVsDywUErkVjMhxRWKospLQz6uoUzHD30AJwLhZWJhUJwfod+SGgmd4Uj0UMK7rFjzk6P96v4oZZj2urLPT8Wjp/0xrWulRVSXVro+TEvlKACt80tMHtdkAlPuO4VoLW+nF0HBz2fpyscPbQVNxhw8oHXPYsmjrwIMLfR/T49L/xFD/t9ttaX0T0YomfI25EhJ3Z7BidXZuOYZgUsD00cfAEYu07F68SRzOiEoV9h/KDt15O7RCf+rT7fzrFCYWBCy4qfCysTRxKCuMKKx7W5yUSjiioEA4cfgP26b8Dh3RrBSWg7uwZ9PaCI8a9IVInqoRV+M6pLKQiI58f2iReqg1P46+gf9XSi1XCCbtHg/Ba9Pn6EE3QRnOPmaq8LC+EJ172Ck5NDEWWP161r4cSFBc+/zwSj9M6sKSUYEM9jm3hNHTg5FHxQORM9vHKmpa4sK+dRkxawROR8EfmziGwQkS0islVEtmQ8suNA7IQ0UY2hX0+iE/XrjhVW/NoaFB6bP2I8Zr+3rEQih7dgjRdWfBpzgmsKwdmn/RpzokIhjBew/FpYiUQStGDVlzMSjvp69MNMslx1bMbnCxzfr4IBYXZtqee/X+cEbsJJr9sVz8u8M3Fuohg/HKcT5eqGiiIqigs8z3uJWjz8cu4TiiZq8XBaS72cumM0fHiuKgwGmFXj/e9z4nVO4Gwz8P77nHhNHTgF5va+EYZGIxlddzotWLcA3wQuAM4Clrr/m2MUO/GPP1GaXlVCYdD7GolkRhMkFN8XVmItWAlbVvwZczhBqxvECis+Lcgm6NYITgHc6+SUTGzfCMjhNZZ+LqwkqpXze0VHFliuOgYTp+CIac5Sd5pUnEERDj9JAm+v70zUSgTutdQHvb2WejTBNTsiToHZ8+8zooddU9dWH+sJ43X3RU3YO2BwNMKBfu/yQawFa+Lv0w/nMYm2mV8uaZh4TR2M9xTL9ETI6RSwelT1flVtV9XO2C2jUR0nxrsIHtrfd3at9wktmZDbRz/+YkYRobW+zLcndmOj2wUO/5H59TqbqB7e6gbjB1M/FlYSVRiAk5yGQ/4srIST7Bst9bEL1f25fyS6BmvsukKfxpwFlquOQbLWGOfY7vFJUvjwFqwWH+zvyVrAW+vLCHt8LfX4NDCH571Mn1hOZuIoguBULhcVBDzd11T1sGuwIK6w4GFsic4XwR8VIIm6CFYUF1BfXuR5hXDCysj67LSupVPAelREvi4i54nIktgto1EBInKZiKwXkU0i8rFMr88LiQYyAPfE36cnSaHw4bUB4CSUbT4trERSnPj7trCSpAUrVlg54MPCSiRZd7ssHcyOhlu+SjhgBPi3NSgcPbzbw1h/fB9u5yzJeq7Kpzw11hpTcHilTs9QiJ5B7y5WT9Rtq6qkkLryIk+PK2Pd8A6rCPP+mJfomh2A5toydnYNeZr3QpHDr8EKuINJ+KHL5+HdUb3vvpgstpa6MjoHvL8WcWLeB39cHhAKH379ZrauwU9nouFz3P+Xxj2nwCumPhyHiASB7wGXAruAZ0XkHlVdk6l1eiH59R+lrNhx0IuQJhWKRCkqOLxc3lZfzqPrDiSsWffaWGElQTewoVCEA30jTPPZhLKRFK1u4NTa+i3m8UJh4oPZ9s4B302CG04whD/ArJpSApJbLViFwQAza0qO5xasrOaqfMtTo0kLC+PdaarLqrMeFyTuggR4fkKerFJpvDV5gAtoyHpckLiLIEBzXSlDoQgd/aM0VhZ7EZo77H6CitosDT6QTLJBS2bXlhEQb1tLE11TB+O/zx2dg5w8syrrcUHq3+fy7d6eyzqVM4fGVlNWSGVxATsyfOxIZ6LhixLcMla4cp0NbFLVLao6CtwBXJPhdWbd+LxBh/dF7h0O0z3o7eRxiYwmaAoGp8l1NBL1fELKRCJRJSCHjsgH483Efmx5S9rdzgc1ackka5GdVeu0rPg55onbuaggwMyaUl/uG5B4FEFwh672aatbpnmQq/IqT40P6+2/1piJE2vHeN19MZTkOD29qoSiYMDbLmXhJNfU1Wbn+pNUJk5oHdPica+SRHNNgfObmFHt7bVr4SSxtWSpNSaVREOhg3O+ssfjOVIT7WsiQkt95qc1SVrAEpF3uP/fmOiW0ahgFrAz7vEu97n4+K4XkWUisuzAgQMZDiczwtEokuLE3+vJHRNJ9kOKTYK73YcxJxoSFsZj3ubDE9JkNaNjNWk+jDnR5MjgJITZtaW+3M7JBuYAd6JEH8YMiVuwwIl5a8eAL7u9ZoqHuWrSPOXGlRO5KlkNeXNdKeD9CdzEggI4uXJvzxAj4cyOBpZMsm54gYBzAuflMS/RNDAQd4G/l99nki5lbfXlng4mkWiuqRivW0vHJ45O3J3d08JfguucwNnXogq7PJojNdk1dZCdwUFStWCVu/9XJrl5SlV/rKpLVXVpY2Oj1+EclVCCkXQgrrDiw9rzZF0EWxv82xoUSVLbP6vGmePF6zlBEkl2DVZRQYDZtWW+LHwna8ECJ3H6sYAVSdKtEaCtocy3hZWJkyPHtNaX0Tsc5qCH18t4wHLVFBhNMihCpXutk5cFLOckKXGXMi9P4MJJBgYB95jX4b8uZbNrnQKzV9sMklfUej2YRLJWIvB+LqyxUT4nnH/FJrb2OraJ1zlB3LxrHuX+ZNetgbOv7eoayujE1kmvwVLVH7n/fzZja09uN9Ac93i2+1xeiUSjCWuhm+vKEPFny8pokkEuZoyNAOS/mMNJavsLggGa67ytZUwmkuS6MXAmdvZjzMkKheBUGjy3/SCqesgIlF6brAWrzy2s1JUXZTu0pJJNjgyHJjQ/xZxJHuaqvMpToSSDXACeTxbuDK6U+KQXnBPyeY0V2Q5r7PiRKLY5DWX8beMBolE9rJdKNowmObksd0d387q7W6LziLa4bvtL27J/vW4oSSsRHDqxdUVxOsMXTK1kXT7B+6Hak36f8RNbn5DtqJJfUwfONotd1jKrpjQj60/VRfBTIpJ0DxeRV4jIlRmJCp4FFojIHBEpAt4C3JOhdXnGGUnn8J2ypDDIzOpS37ZgJUomgYDQWufflpVEB0xwTvy9rGVMZvzEP0HidmP2W8vK+OTIiVqDyukbCdM54K/rCmODiSQ6AYoVVvy2TycbHAcmJLTjhIe5Kq/y1Ng1WD48gQsl6eY9PjmtN/t7OEk3PHC6L46EvbsueTR8+JQqMbM9Hqp9NMk1dWODC3nW4pG4lQjGJ7b2qnVtdNIKEP+1YNWXF1FZXOBZDg2FU7RIZuH7TFUMfwG4V0SGgeeAA0AJsAA4HXgY+FImglLVsIh8AHgQCAK3qurqTKzLS5EkfUMhNuy5/06SRsJRihP8wMFJKH4sFCZrwQLnhPTprV2+a1mJnfgHk5xE94+EPR0FKpHYiX+C4+z4JJKdAzRU+CfmZHP/wKGFlTNba7MaVyrJJkcG5wL2gPizq24GeZKr8i1PJetSBs4J3B9f2Ju0gi3TnGuwDt/fGyuKKSsKeja6WyhFpdKcuOPHzAzVkKcyGk7cnR+c73Plzu7sBhTHmWj48O+zqCDArFrvBhdK9X2OtZZ2DXgyWl+qCpDmujIeWrPPs1GcQ1GlrPjwuESEtoZy7wpY0dTX1IHzfZ43rz4j6096pFTVu1X1fOAGYDVOAukFfgGcraofVtWMXbGrqn9S1YWqOk9Vv5ip9XgpnKSLILjdwHxYCz0SilJcEEz4Wlt9Gdu7BohmsE/r0YjV5CXi9UW1yQyHnANDosJsm8f9mpOJXWieaP9oG2sN8teJ/4jb7aKkMEHS8umAIuPb+fCYx05QfHjsyBQvc1U+5anRVBf415cRiSp7ur271ilRwU4kNneSN8eVZIMRQdwxz6Pjx2gkkrSA1Vxbyp7uzF5/kko4RUG9ta7cwwJz6t8AeHdt/EiSayTBKSyEIupZa2k4ybD74FQ0eHWukuqaulm1pTzxsVfwxjObD3ttqkzakVRVNwIbMxbBcWxoNEJpYfLCysFBZ3LH6rLCLEeW3Eg4Qm2SaztaG8oZDkVp7xtherV/5mgaDkUoSbadx2oZB5lW6Z+YR8IRggFJ3Le/frxm9CwP+qknMxJKXliZ7Q7V7rcT/+FQ8kLh2IAiPmsNGh7bzsmOHf4d/TCTLFcdm1A4dQsWOCMJxka5zaZkXcrAaVnY1N6f5YgcqVr9ZlSVUFwQ8OyEPFXFYnNdGeGosrdniNnusO3ZNJpgouGYlvoy7n9hb5YjcqT6PqtKCqktK/S08Jesy2f8XFiZup4olXCSy13AOce6b9UeRsKRpJXzmZLqmrpgQDLespz9tn4zZnA0QllR4h1ufI4mf50opeoi6Ndhz4dDUYpTFGTBnzGXJNnOs2vd0Q99FvOQW1hJdOLv16HaU7VggT9bkse3c/JWWb+Ofmj8K/ZbSHR893KuHVVN2kUQnP1958EhT3pODI46v8VEFaWBgNBa7911yam6CI7NhdXlTYvkaDiS8jzi4GCInqHsj4Q6mqKSAaClvty7a7CSDDAG3g/VPhKOUJSk8DSnwRnp04vYYse0ZL+DTLMCloeGUrWsuAUsLy9cTGQ0nKqL4Ph1Nn4yEo4kPRn161DtqVrdxkY/9Fl3u+EUBSzw51DtqVqwIDYIir8KK7GYk7Z+N5Qfj0O1m2PUPxIGoKLk8I4tXk6cOxSKoAplSUZua6kvY9SjwSQGR51tlqyi1Bmq3asugikKWO7cZl4MdKGqDIxGKC9OvM1aPBxMIlZgTh6bcxmEF5xCTOLvc2ZNCcGAeHa+ODAaoSLJNpvT4Izu6cXlAQOxY5oHoz6CFbA8NZSiBcsPkzsmMhRKXvM0o9r5kXtVK5bMcChCSZIT6IJggJk1pez0cE6QRIZDyVsKwftRgxIZ67qWIqn7cd+A5K1BLXVl9I2E6R0KZzOslCYryDaPzXPjr/3D+Fv/cPKTkUBAmF1X6skxJ1bwK09ykhQbDcyLypvYCXmyPN7ijtbnRQXNwEgk6Tab6Y7Wt8ujVoVIVCkrShxbW4N7rZMHBZn+SU7IW+vK2NM9PNb1LJv6h8NUliS+XKQgGGBWTaln3RcHR8JJv8/4SxqybWCsAsSnBSwRWSgij4jIi+7jRSLyqcyHlv8GRiNJv/iyogIaK4t91xrUMxSiujT5j3xGdYnvTuz6hsNJEw3ETvz9FXP/SChhTXLM7NpS323nwdEwRcFA0r71zbVl9AyF6B32T8tK39hJZeJ9OnZ9gpdDGk801i0paeWMt91/vGK56tiMFWSS5CSvKnUGRpz9PVkNeauHk9OOF7ASb7PZtaUMh6J09Gd/eoqeoRBVSXJIYTDAjGpvKhYna1WIdXfz4tq1sRbJFK2lkaiy24Pt1jccpjLFOYFXv89oNNYimTi26rJCKksK2O3BADnjxw6fFrCAnwAfB0IAqroKZ74Pc4w6+0eoTzEZaKuHoyMlMhKOMDgaoSbFoBuza/3XGnRwcDTldm6uLfN0VvtEDg6kntx2dq3TTz2WrPyga2B00pgBdvnoxP+gOy9XbXmyApb/WoNic4kl26djMfupUJgllquOQc9QiMqSgqST4rbUlbGjM/utMX1uhUyySpAZ1SUUBsWT2vvuoVGKgoGkLeCxyg4vjh+9KSpDwTlOeHFC3peipRS8rVyeLLbWWOHPo+2WqoDVXFfmSUVxn3sOUpmiEDOrptSTAlavex1fqsrqTEqngFWmqs9MeM4/Z3U5KhJVOgdSz2Pkt25g3e41HdVlkxVW/BOzqjon/hWpTvxL6egfYcitjfSDzoGRlIWVWe5JtBcHrWQ6B0ZpqEyxb3jY7z+ZrsFRKooLkl6DFbsY3E8F8E53SoH6JPOJVZYUUlNW6KvfYZZYrjoGe7qHmJFi9NdYd9nuLF/bt6/HubaqqSrx/l4QdEb79KIF60DvCI2VxUnnUJzt4fGjc2A0ZWWoVyfksWvlUo003FJX5kkL/L6eYUoKA0lb/mKDj3kxEXJH/wj15anPF7sGRscqJLKl3f0+pyX5fYLTJdWLKR7296U+dmRaOgWsDhGZByiAiLwB8GYMzTyy+6AzB0XsRDmR2XVl7OsdHpst3mux1rTmVDHXlrG/d2RsNB6vtfeNEIoo06uSH8xj38GeHn+cREejyu7uIaZXJd/OsaFY/XQSvevgIE0phrqPxezVXDqJ7OwaSpnoq0oLqCgu8FUBa/fBIYoKAtSkqJ2eVVPqSTcWj1muOgY7ulIP8ezVSIKx40Wq32lTVTH7PRjkYnf3UMqTt/EW8Oz+FnvcUfhi31kizbVltPeNjF3TmS2x77MpRU5uqir2ZG7KPT1DzKguTVpgnlZZTHFBIOu/gUhU2XVwiNl1k/8+s10w3eNWgKQ6x5pRXeJJ3t/bPUxVSYF/r8EC3g/8CDhRRHYDHwL+NZNBHQ9W7e4G4KQZyWcEb6wsRtXpeuUH6/f1AjCvsSLpMrEWjIOD/oh5zV4n5gVNyWNurHAODJ0e9JNPZFvnAMOhKAtTxDzNbfn0om9/IsOhCFsODLBwemXSZWrLiggGxDfbGWDdvt6U21lEaKwsHuuW5wdr9/WyYFpF0q5cAA0V/oo5SyxXHaX+kTAb9vdx2qzqpMuMTbSa5ZPL1Xt6qSsvojFJiy1AY2UJHVk+IY9GlTV7ezkxRQ4vLy6grCiY9djWppGrYz0Ksl34W72nl+KCwNi1c4k0VhRzoC/7BazVe1Lng0DAyQfZzrtbDvQzGomm/D69qgBZvacHgBNS5P6ZNaUcHAxlvTD/4p6elHFl2qQFLFXdoqqXAI3Aiap6gapuy3hkee6eFXuoLSvklJkpClhutzYvanISeWjNfmbXlo7VyiUSa8LOdkJJ5s9r9lNSGOD05pqky9S727nTJzE/vHY/AOfOrU+6zHjM/jiJ/uv6A4Sjyjlzkk98HAgItWVFdA74Yzuv29fLroNDnJdiOwPUlRf5Zt/oHhzl2a0HOWdO6pjrK4p8s29ki+Wqo3f3it1EFV52QmPSZbyYa2c0HOXR9Qc4Z05d0lYFgIaKoqyf9D69tYu+4XDKYx44v8VsV5L+ec1+ggHhrBSxjQ2Gk8VeENGo8pd17SxpqU061xQ4FUQ9QyFGwtk7Id+4v4/tnYOcPdmxtbwo65VXD61xzglS5arZHl028PCa/ZzQVElNiktHYtcLZ3O7tfcOs2pXD2dP8vvMpEnbzUTkxgmPAXqA5aq6IjNh5S9V5Y5nd/LQmv188OIFkx5kAE9qcib646q9/G1jBx951QmTJjrwx4n/8u0H+d2yXbzmjJkpm4hjP/4OH9T4b+8c4IePbeGcOXW0NZQnXa6sqIDSwqAvTvwPDozytQfXMbu2lPPnN6Rc1osToUSGQxFuumc15UVBrjhtRspl68uLfDHYTDSqfO6+NYSiUd501uyUyzotWCOoasrfaz6xXHV0XtjVw9ceWM+SlhqWtNQmXa6sqICqkoKsdsX71sMb6Ogf4a1nt6RcrqGimP6RcMr5A6fSwEiYL/1pLfXlRVx6clPKZevKi7Na4bhmTy+/fHoHV5w2g6okw3rDeIE5m0O13/L3rWztGODDly5MuVzs2vTO/lFmpui2OlVGwhFuunc1pYVBrjl9Zspl6yuy2x11e+cAP/nbFs6fXz9WKE6kpqyQomCA9r7sxfb75bt4bkc3n7nq5JTLxa4n7+ofTdkNeapEospn712DAG88sznj60smnY6JS93bve7jK4FVwA0i8ltV/Vqmgssnw6EIj204wM+e3MY/NnXy0gUNvO/l81L+TaMPuoFtau/nlr9v4Y5nd3JGSw3XXTAn5fJ1YzUV3p347+0Z4mdPbueWv21lRk0J/3XZiSmXry33vgWre3CUO57dyfce3UQwIHzxtadN+jd15dmvGY03OBrmzud3891HNtE1MMpt7zk7ZYUBeFObGy8UifLAi/v4ziMb2djezzfftDjpYBEx9RXFPLfjYJYiPFw0qjy+8QD/+5dNLNt+kA9dsoATpydv+QanUDgcijKYYvjcPGS56ghsPtDP7U/t4OdPbWNaZQnfevMZkxbGm6pKsnJyubNrkK8+sI77Vu3lzUubuXBh8pY1YKz74IG+kZQnocdKVXlycyc33buaTe39/OAdZ056fUdDeVFWJkFu7x3mjmd38uPHt1BVWsCnXn1SyuUbK4opCMjYNTSZtL93mG89vIFfPbOTV53SxFWLUldqxc592vtGMl7Aem7HQT57z2pW7urha69fNFaxnUx9eRFr9vRmNCZwLg35zTLn+4xGlS+8JvU5Qaw7+4HezJ/HHBwY5X8f3cT//WMrZ8+p453ntqZcPpvnhWv39vL5+9bwxOZOPnrZiSkrqjMtncw7G1iiqv0AIvIZ4I/AhcBy4IiTlojcBLwXOOA+9QlV/ZP72seB64AI8EFVffBI398PRsIRnt/RzZObO3lySycrdnQzGonSVFXMp159Eu9+SVvS+YJiYj/0bNZ+DYecuB/feICH1+xnY3s/RQUBrj2vjY9eduKktYOxk9VstmCFI1FW7urmsfUHeGzDAVbtdvoEX7VoJp+56uRJT6ALgwFqygqzeuIfjSrr9vXx2IYDPLahnWXbDhKOKi9d0MAXXnPq2GhFqdRXFGW11U1V2XxggMc3HODxjQd4aksnw6Eop82q5sfvOpNFs2smfY/68mJW7erOeKzx9vYM8fgGZ9/428YO+obDtNWX8dN/OouXnzBt0r9vcAuF0aimvO5pKnX0j/D3jR3utu6go3+EhopivvHGxbx+yaxJ/z7+d5itAlbfcIhntnbxj02dVJQUcOMktdQZYLlqEn3DIe5btZffLtvJczu6CQaE150xi49efuKkJ5YQK2BlJh+FIlH+P3vnHd5mdTXw3/HecTyzbGfvvQm77E2BsvcqLf1aSltGJ4WWFgotUKBsCBD23jsQVvbeO87wdryXxv3+eF85iiPJsq33lRTu73n0WJZk36N33HPPuOd8vq6cFxYW8/WmCuJjY7jxuOH84uihnf6tZ+9vZYM1BlZ9i4N3V5Tw7PfbWV9aT79eSTx1eXDzR3ZaAmssWpArpViwrZrn5u/g49WlON2Ko0bkcuePxwUsIgFGynZ2WgKVFmXIuNyKeRsreGFhMV+sLwfg2iMG89vjA2fBgNfaxyLZmtqcvLtiD3MWFLNyVy05aQk8dOFkTunE8APIMvWBFdkBSilW7Krl2e+3897KEtqcbmYOzuLOH49jUBCGQm56IuUWHTOlFEuLa5gzfwfvrSrB4XJz/rRC/nTqqE7Xsh4Dy6q9+a1OFx+tLmXO/GIWbq8mPSmOf541jvM7iXxbTTCaNw/wPmMOIF8p1SwiPTmT/1FK3eP9goiMxuhbMgboB3wmIsOVUpFTP9sPbU5jkT/fNKiW7NhLq9ONCIzpl8Fls4qYNTSHw4fmdHoxekhNNNLArEwR9Mj9/ZYqvt9SxZLivbQ53cTFCNMHZXHB9EJOndCXvADV4bzJSIojPlYsjbq53Yp1pXXtMi/YVk1Dq5MYgYkFmdxwzHDOmty/S4o2OzXBUkNWKcXWysZ2medvrWrPRx7VN4OrDh/EmRP7Byx60pHs1ATL9+ftqWnmuy1VfLelku+3VFFiejsH56Ry/rRCThnfl6lFvYNWNNk2pAhWNrQyf2sV322pYv6WKraaHeT7ZCRx8ti+nDi2D0cOzw3aWMpKTcCtzH5qQSxCu0Ndi4OFW6vbj/X60vr2sQ8bmsNxo/M5YUwfEuKCmzuyvfZvFgbYTN4TWhwuluzYy3dbKvluSxUrd9XicisS42I4aWwfS8bsBK2rfOB2K+ZvreLVJbv4cHUJLQ43Q/PSuPWkkfx4Un/yOlmIe5OfkcSWLZUhlW9bZSMvL9rJ60t3UVHfSp+MJH75o2GcP72Avr2Ci17sc0aGbm7xddxG9c3grrPHcfqE/n4bfXckKzX06boNrU7eXLqL5+bvYGNZA72S47l81kAumlkU1ELcQ05a6NMXS2qbeWXRLl5ZvJPdNc3kpCVwzeGDuWB6QVCOQ/DaYxzCiIdSimU7a3h18U7eXVFCQ6uT4flp3H7GGH48qT/pAdIpvclJTaTN5aa+1RkwBbMrtDhcvLNiD899v4NVu2tJTYjlvKkFXHJIEcPzgy/SkJeeyPYQl5CvqG/lzWW7eHXxLjaVN5CWGMd5Uwu4eGZR0AUkPHvzQ+14X7OnllcX7+Kt5bupaXJQlJ3CrSeN5CdTCwK2ubGLYAysOcACEXnb/P004AURSQXWhlieM4CXlFKtwDYR2QxMB74P8Tghobqxjc/WlfHJmjK+2VxBi8MoTT6qbwYXzijkkMHZzBiUTa8AvSg6w6hYE9oJsLbJwRcbyvhsbTlfbaygodWJCIzqk8ElM4s4ZHA20wdndWvyEBGyUxNDnm7X4nDxzaZKPl5Tyufry9ujTYNyUjl9Yj8OHZLDYUNzun2ss9NCXxnI4XKzcFs1n6wp5dO1ZfuVMz1yeC6HDMnmyOG5XVrgeJOdlti+EA8Vbrdixa4aPlpTyqdrytqNk6zUBA4ZnM2sodkcMSy3215iK/ZKKKXYWNbAx2tK+XhNabu3OC0xrt1JcMTwXIbnp3VrgdMeDWoMrYG1s7qJj9eU8tHqUpYW78WtIDEuhqkDe/O7E0Zw+LAcxvbr1a2oWY6p0EIdlS2vb+GzteV8vKaU77dU0eYynDETCjL52ZFDmDUkm8lFvW3ZB+MDrau8aGh18uKCYmZ/v51de5tJT4rjrMkD+MmUAUwsyOzWvZCfYXjIexrNdbsVn64r48lvtrFwWzWxMcLRI/I4f1oBR43IDdoJ6SGU2R6NrU5eWbyTp7/dTnF1E+mJxnE7Z8oAJnXjuOWkJeBwKepanAEb/wZDcVUTz3y3nVcW76Sh1cm4/r24+5zxnDa+X9AG3/6yhUbvKaX4bksVT32zjbkbynErOGxoDn84ZRTHjsoP2jHkLReExmBucbh4a9lunvxmG5vKG0iOj+WU8X05b1pBl5yDHjzGX2V9a48NrNLaFp6bv50XFhSzt8nBsLw07jhjDD+ePMBvs+NA5GUksnB7dY9k8rCseC+Pf72VT9aU4XQrJhdm8s+zxnHahH5dzorISI4jNkZCoo8cLjcfrCrh8a+3snp3HQlxMRw/Op9zpxZw2NAc27JMgqHTo6SUukNEPgJmmS9dp5RabD6/qAdj/0JELgUWA79RSu0F+gPzvT6zy3wtYnC6jKpGLy4s5ktzIunXK4lzpxYwa0gOMwZlte/pCQW56aEpV+pyK77eVMEri3fy6doyHC5Fbnoip03ox1EjcpkxKCtgFZiuYEQpei6zUoqVu2p5cWEx767YQ2Obi/SkOH40Mq/dQAnWw9kZuWmJrC8NTRrH5vIGXlpYzBvLdlPd2EZiXAxHDM/l+h8NZdaQHAZmp4TEk+mpFBcKz2hJbTMvLdzJq4t3sqe2hbgYYebgbC6cUcisITmM7JMekonLu5pQTze77m1s4/Wlu3h50U42lTcAMLkwk9+dMIJZQ7IZ179XlxdqvsjxUqhd8Sb6wpOa8sLCnazYWQPAyD7p/Pyoocwams3kwtAYJ+2LgBDch21ON5+uLeOlRcV8s7kSpaAoO4VLDyni0GE5TBuY1a3FQKjRusqgsdXJY/O28vS326gzq9z97oQRnDCmT4+vrfyMJFxuRVVjW/s+ma7gdiveWbGH/36xiS0VjRRkJXPTiSM4Z/KAbjuawGuPRw+u96Y2J098vY0nvt5KXYuTKUW9+c3xw3t83LyNv+4aWMVVTfz70w28vWIPsSKcMr4vl88a2G1D2Vu2jWXdd9IppfhyQwX3f76J5TtryElL5GdHDeG8qYU9ipwnxceSnhjXo7VPq9PFs9/t4LGvt1JR38rY/hn886xxnDK+b9DRKl/keDncBgfeGuiXsroW7v98E68s2olbKY4bnc/lswYxc3DgapmdkZeeRE2TUX0xMa571+yi7dX86+MNLNxWTUZSHFceNohzpxYwNM9/ifjOEDEqCPfEwHK63Ly8eCcPz93C7ppmhuYZ0cfTJ/QL2do11ASlFZVSi0RkB5AEICKFSqniQH8jIp8BvvJE/gD8D7gDoyHkHcC9wJVdkBsRuRa4FqCw0Po8yxaHi5cWFvPovK2U1LaQm57IT48cwinj+jKmX4Zllbpy0xLZWtnQ7b9vdbp4Y+luHvlqCzuqmuidEs8lMwdy2oS+TBiQaYm131OvmMe7+dDczazcVUtyfCynju/LaRP6MXNwdpe9YcEQitS1BVur+O8Xm/lmcyVxMcJxo/M5Y2J/jhieY0mju9w0I1WhrtnZ7cjdupI6HvxiMx+uLkFheB1/e8IIjhmZ36PIqz+8c+u7a2DtrG7i4S+38PqSXbS53EwqzORvZ47l+NH5PVqk+cOzgb4n+92qGlp5/OttzJm/g/pWJ8PMFK0Tx/YJOm2mK4Si9UBDq5Pn5+/gia+3UdlgnK//+9EwTh7XhxH56RFZnfCHrKuUUryxdDd3fbSe8vpWThzTh+uOGhKwRUVX8ezrKatr6bKBtWTHXm5/by0rdtYwsk86958/kVPG9Q2JEyQpPpb0pLhuzeFKKV5bsot/fbyB8vpWjhudz3VHDmFKkf+Kil3Be84L1MfIF42tTv796Uae/X47sTHCtUcM5spDB3W6vypo2dK776TbXN7A7e+tZd7GCgb0TuZvZ47lnCkDQha97q6jVinFx2tKufOD9RRXN3HY0BzuO28is4Zkh2TO6sn+sBaHi4fmbubxr7ficisunFHINYcPDtm+Qc89WVHfyoDeXfufO6ubuPODdXy4upT8jET+dOpozptWEDLnWU8qCM/bWMEd761lU3kDU4p6c/sZYzh6RF5ERat8EUyZ9tMxlEo/oBwoBNZj5J77xexH0iki8jjwnvnrbsC7puIA8zVf//8x4DGAqVOnqmDG6g5utzH53vOJMflOG9ibv5w2hmNG5XVaMS0U5KQnsGBb9yaZt5fv4a6P1lNS28L4Ab148MJJHDc6v9uejWDJSUtkUze9Yt9uruRv769jXUkdRdkp3HHmWM6c2K9HHqdg8PTdaHO6u2zArdlTyx3vrWX+1mpy0hK56cQR/GRKQbc8vF2hvYx/Q2uXjSHvyTQ9MY5rjxjCRTMKLa3ABZDjKb/bjdz6qoZW7vlkI68u3kmMCD+ZOoBLDinqtKJeT+mJQm1qc/LgF5t5+tvttDhdnDLO8DxP6UZqSldIjOv+gtPhcjP7u+08OHczNU0ODh+Ww5WHjeeIYbnERrBC+yHrqrK6Fm56bSVfbaxgYkEmj1wyJWDJ9e6Sn5HYPt7YAE2JvWlxuLj7ow089e028tKNQi1nTeof8sVRblpil/ek7q5p5pbXV/L1pkomFWby8EWTmTowtH1z9hXg6Nq9+NXGCn7/xir21DZz/rQCbjh2eMgMKw/dcdK53IpHvtrCfZ9tJCk+lj+fOppLDikK+XqoO/vDqhpa+eNbq/lwdSkj+6Tz3FXTOXxYN8NM/uRK7152wOLt1dz0+kq2VjRy+oR+/Pb4ESHfH5vXDQNLKcWcBcXc+cE6AG48bjjXHD64WymngchN7/r9Wdfi4I531/Lqkl0UZafwyMVTOGFMfkQ693wRjGl6BzAT+EwpNUlEjgYu7smgItJXKVVi/vpjYLX5/B2MnPl/YyjJYcDCnozVEzaU1nPrGytZWlzDlKLe3Hf+RA4ZHBovSLDkpiWxt6lrC/8NpfX8/s1VLNmxl/EDjBztw4bm2CZ3TrrhqeiKV6ysroXb31vL+ytLKMhK5t/nTuD0Cf1C4t0MBo/Hv7qxjT69glNi9S0O/vXxBp6fv4PeKQn8+dTRXDij0Lb9J+2pCg2tQYfvW50uHvlyKw9/aZSD/+Uxw7jq0EGWRKt80d5zrD74xYbbrZizsJh7Pt5AY6uTi2YU8rOjhgZ9nnpKr+R4YmOkywr1o9Ul3P7uWvbUtnD6hH788phhPUqz6CrdWXAu3FbNH99axcayBg4flsONxw1nkgULdYv4QeqqeRsr+OVLy2hxuLj9jDFcPKPIMs+u554Ltuz4xrJ6fj5nKZvLG7j0kCJuPnGkZVUtc9ISu+QE+XhNKb99ZQUupbjjzLFcNL3QsowOCH5B7nS5+dfHG3h03laG5qXx2nWHMKXImmapXXXS7alp5oaXlrNwezWnjOvLX88YE1T1ye7KtqUi+OydbzZV8quXllHf4uSWk0Zy9WGDLFk/ZKUkIAIVQRrMbrfif19t4d5PNtC3VzLPXjm907YD3cVTjCzYSoI1TW3c8PJyvtxQweHDcrjr7PGWlcXPTU9kS3nw53P5zhp+/vwSSutauP7oIfzymGGWBwdCTTAznUMpVSUiMSISo5SaKyL39XDcu0VkIkbaxXbgpwBKqTUi8grGhmQncH04qjIppXhu/g7+9v460hPj2ksjh8NqzvXy+He238jtVjz93Xbu+mg9aYlx3H32eM6ZMsD2MKqnyk6wm3o/XVvGTa+toKnNxa+PHc5Pjxxs+yZ5byUYzMJ9yY693PDyMnbvbeaSmUXceNwI24wUD131jG6paOCXLy5jzZ46Thnflz+eMipke9iCpf04BxnBKq9v4bevrmTexgoOGZzN7WeMYVgP90F1lZgYITs1IegKSA2tTv789mreWLqbkX3SeeCCSSH3igdDTlrwxWYcLjf//nQjj3y1hX69knnskikcNzp6PIUmPyhdpZTi6W+387f31zI8P52HLprc5RS0rpKTlogIQZVq/2RNKb9+eTkpiXGWLirbZUtPYEMQRX/cbsW/P93Ig3M3M2FALx68cLKlkfveKQnESHAGVk1TGz99bgkLtlVz8cxC/njKaEt14b5em5076ZYV7+WaZ5fQ3Obk3p9M4CyL10TZacFl7yilePKbbdz5wTqG5KYx55oZlmY1xMXGkJUSXPpiY6uTX720jM/WlXPahH7846xxlu5XzcvY1z+sM9aX1nHts0sorW3hjjPGcPHMIkvPZ156EhUNwVXTfG3JLn7/5iry0hN5/WezosnJtx/BnOkaEUkD5gFzRKQc6FEdSKXUJQHe+zvw9578/57Q4nDxm1dW8P6qEo4ekcs9P+m8EamVeOfUBloMN7U5+eWLxo187Kg8/hlEwzyr8Cz8qzrZ1Ot2K/7+wTqe/GYbY/pl8MAFkyxfIPgjpwtFAZ74eiv/+HA9fXsl8ep1s0KWq99VuuIZfXfFHm5+fSUJcTE8dskUjh8TljLaJCfEkpoQG1QEa9H2aq57bgmNbU7+duZYLppRGLYFf7DpKpvL67l69mKKq5v45THD+OWPhtoWhe1IdlpCe/GPQFTUt3LNs4tZvrOG86cV8OfTRluyZ9AGfjC6SinFvz7ewMNfbuH40fn857yJtvQ7i4+NITs1kfJOIliPz9vK3z9Yx4QBvXj0kqm2RJuzUxOpaqwK+BmXW3HTayt5fekuzp06gNvPGGu5My82RshK7Xz+qGpo5eInF7KlwmiAftbkAZbKBV4RrE4W5B+uKuFXLy8nPyORF645tMfFfoKVbW+TA4fL7Tf9UCnFX99dyzPfbeeEMfnce+5EWwruBBMtbWh1csXTC1laXMNfThvN5bMGWq6/slPN6Fon9+d3Wyq5ZvZiUhPjePHambasYXLTE3G4FDVNjoCF4B74fBP//nQjhw7N5sELJoe0aJzdBHMlngE0A7/GqMTUC/irlUKFi6oGY6GxbGcNt5w0kp8eMTjsHlxvA8sfVQ2tXDl7Mat21XDbaaO5zIYbORDeJVb9Vdlpc7q58ZXlvLeyhMtnDeTWk0eGNfwbTFlYpRT//HA9j87byolj+nD3T8aHrA9GdwjWMzr7u+3c9u4aphT25sELJ9uWWuePnPTETvdgfba2jOtfWEr/zGReunam7VGrjuQE0S5hWfFernhmEXExMbx4zUxmDM62STrf5KQlMn9r4AXnzuomLnlyAWV1rTx80WROHtd5o80I5gehq7znoQtnFPK3M8bamqXQp1ei3xRBpRT/+WwTD3y+iVPG9+Xen0ywNWW6JsCC3OVW/O7VFbyxbDc3HDuMXx0zzL60+bQEKgI4lSobWrno8QVsr2rkiUunWh7t85bLM74/3lu5h1+9tJyJBZk8dskU2xzOnv261Y1tPveeKaX4yztrePb7HVx92CB+f/Io2+4DYxuE/2NW1+Lg8qcWsmJXLQ+cPymoBsahIM7jAAmwXvxifRnXPb+UgdkpPHvlDNvWA579YeX1rX6Npv98upH7P9/EWZP7c/fZ48PmnAwVwRhYf1ZK3Qy4gdkAInIXcLOVgtlNVUMr5z82n+LqJh6+cDInRchCo1+mcfEXVzf5fL+4qonLnl7InppmHrk4fJEJbzx5wP6UcGOrk+ueX8LXmyq59aSR/PTIIXaK5xOPIVvmR2any82tb6zi1SW7uHhmIX89fWzYN/zHxgjZaYl+ZfZe7Bw3Op//XjApXP2J9iM3LZHSWv8etteW7OLm11cypl8GT18+LawRZA+5aYlsDJB+NG9jBdc9v4SctESev2qGZc19u0JuuuEB9tdzbH1pHZc+uZBWp5vnr54RtkhsCPlB6KpHvtrKo/O2cukhRfz19DG2O9Py05Pae/p5o5Tizg/W8fjX2/jJlAH88+zxts6RuV4LuI4VSp0uN795dQVvL9/Db44bzv8dM8w2ucCovlhS2+zzvfL6Fi56fAE79zbx1OXTOHRojm1y9U5JCLi/9INVJfzqpeVMKezN01dMsyVK6iHX0yy9vvUAA0spxZ/fXsNz83fw0yMGc8tJI229D/LTk/w6r2qbHVz61ELW7K7loQsnceJYe9eSeen+DayPVpfwixeWMbpfBrOvmG5rdCjPa43lq0Gxx7g6Z8oA7rJ57rCKYMzD43y8dlKoBQknNU1tXPLkQoqrm3j6imkRY1yBsbDLTIlnY9mBqT6rdtVy1v++ZW9TGy9cMzMijCsweuSIwFYfG1SrG9u48IkFfLu5krvPGR8RxhVASkIcfTKSfG7CbHG4uO75pby6ZBe/OmYYd5wRfuPKw6CcVLZUHJgF5XIbCuiBzzfxkykD+N9FkyPCuAIYnOtbZoDH5m3ht6+uYObgLF64ZmZEGFdgyFxa10JDq/OA995buYerZi+iKDuV1352SEQYV2DIDLDVx7FetL2acx/5nhgRXr3ukIPBuIIfgK56b6VRGfa0Cf247TT7jSuAPNNYUGpfQUS3Od88/vU2LjukKCwLpEE5xvW+ucMc7nS5+fUrhnH1uxNG2G5cAQzJTWNrRSNu9/5FJMvqWjj/sfnsrmnmmSum22pcgbG/NC89kd17DzT+PlxVwv+9uIzJhZm2G1cAhVnG+exY6MLtVvzp7dWGcXWk/cYVwJC8NPbUHqgPaprauPiJBazdU8vDF0223bgCYx9Wef2BDpDP1pbxixeWMaEgkzlXz7A99W5Qru/zqZSxJ/J+c61y90FiXEEAA0tEfiYiq4ARIrLS67ENWGmfiNZzx3vr2FzewGOXTmXWEHsnuM4QEYbnpbOhQxPcrzZWcN5j35MYF8trYdwH5Iuk+FgKeqccsP9jT00zP3nkO9aV1PHoJVM5d2qBn/8QHoblp7G5w81f12J4oz5fX8ZfTx/Dr48bHva0UW+G5aWxubxhv8VOm9PNr15a1u7du/ucyAq1D8tLp7Khlb1efaWUUvzjw3Xc+cF6Th7Xh6cunxYRzWs9eDaAdzTAn5u/g/97cRmTCnrz0rUz26O3kcCwPMNLuKl8/8jb5+vKuPiJBeSkJfLazw6xZT+FlfxQdNXexjZufm0lU4t6869zxoetB8yYfhnUNDnYVmkY7m634o/mgvfaIwZz2+ljwiLb8HzjHvVuEeJwufnVy8uNPagnjuT6o4faLhcY80ezw8Xumn2GTEltM+c/Np+y2hZmXzmdmWFKKR7dN4M1e/ZfX3y0usSc1zJ5+orpthtXAEPyUomLkf0Kl7jdij+/s5rn5xdz3ZFDuOVE+40r8K0P9ja2ceHjC9hQWs+jYdznnJduZIh4rwnmbazg53OWMrpfBk9fMc3ytje+yE1LpHdK/H6NrZVS/OfTjTzw+SbOnWpEriK9t1VXCLTqegE4DaMc7WlejylKqR6Vvo00/njKKJ65YhpH2pT33FWmDuzNil211DQZC9KXFxVz1TOGx/yNn8+ytfRzsIzqm87y4pr2m3xzeT3n/O87yutaee7K6Rw3Oj/MEh7IqL4ZrC+pp9H0SpXXtXDeo/NZumMv9503kctmDQyvgD4Y1TeD2uZ9i52GVidXzV7EeytLuPWkkdx68qiIMggBRvY1FvTLd9YAxiLo5tdX8uhXW7loRiH/vWByxJVjHWVWpVpWvBcwFMP9n23iT2+t5piReTx71fSgKmbaycCcFBLjYlhWXNP+2mtLdnHtc0sY0SedV687pMvNKCOUH4Su6p2awOOXTeWxS6eGNRrtibJ8sraMFoeLX7+ynBcWFPOzo4ZwaxiiCR6y0xLp2yuJxduNe7TV6eIXLyzl/ZUl/P7kkfzsqPBlS4ztb8wfi3dUA8bex/MenU9FfSvPXjWDaWGoMuphTP9ebKlooLbZAcD7K0u43ox0PHPl9LA5uhLjYhmal8ZSc851uRW/f3NVu3F184kjwnateXrALdpunM/y+hYueHw+mysaeOzSKfxoZPjWN+P696KyoY0dVca2ku82V3Ltc4sZkpfGs1dOD9u+cRFhdL8MluzYp0Pv/ngDD3yxmfOmFvDPsw4u4woC78GKBeqA6zu+ISJZSqlqy6Symd6pCcyyOTTfFU4e15eHv9zC3983GsG9umQXhw/L4eGLJofFExEMR4/I4+M1ZSwtrqG+xcEvX1xGQlwsL/10JmP6Bdeg0m6OHJ7LY/O28unaMobkpnHd80uobmzjycsj1/j2yPXuihLOmtyfnz63hA1l9dx99njOnRZZEUIP0wZmkZIQy7sr9jB+QC9+/coKo5fPj4ZGXITQQ2F2CoNzU3lvZQnnTivgL2+v4dUluzh78gDuOntcREUIPSTGxTJrSDafrCnlphNH8MiXW3jgi80cOjSbRy+ZGlERwh7yg9FVkZBhMSgnlUOHZvOfTzfyzLfbKa1r4XcnjODnRw0J+7177Kh8Xl2yk+82V/LfLzbz/dYq/nTqaK46bFBY5Rrbrxd56Ym8tHAnvVMSuOm1le17HycWZIZVtmNG5vHA55uY/d12kuJjuOujDWZaYPiMKw/Hjc7nobmb+W5zJc9+v4OP1pTyi6OH8pvjw6sn+mcmM7JPOq8t2cXofhnc+sYqyutaeeqyaRw2LLz3qKdAyrPf72BoXhq3vbOGgTkpPHfVdDJTwluR79hR+fz13bV8uraMT9aU8uqSXWEp1GMX4h1G3O8NI73C82bHb66UUoOtFKwrTJ06VS1evDjcYljKH98yPDdxMcI1RwzmN8cNj8hFnYf6FgdH3/MVNU1tON2KEfnpPHn51Ij2mDtdbk797zdsKm/ArRR56Yk8edm0dm9VpHL17EV8tq6cuBghKT6W/144iaNH5IVbrIDc8d5anvxmGwmxMbiV4m9njuX86YXhFisgz36/nT+/vYaE2BjaXO6INgg9fLmhnMufXtQu89mTB/CPs8YF3bQ8nIjIEqXU1CA+p3WVzZTVtfDXd9fQ4nBz9eGDIsLwA9he2cjJD3xNU5uL5PhY/nbmWM6eYn2582DwzB8AhVkpPHHZ1IhIz1VKcelTC/l6UyWArWX/O6OsroXj/zOP2mYHcTFiNBA+PDJu5/dW7uEXLywDID8jkf9dPIXJEdKv6dcvL+fNZbsBmDUkm/9dNMX2Pp2+qGtxcPy/51Fa14II/N/Rka9Dg8GfrvJrYEUTB4vSCoRSiq2VjfROSSArSvoCbCyr5/n5OxiYncqFMwojpshCIPbUNPPYvK1kpSZw2SEDI2JS6ozaZgePfLUFpeCyWUW2Nw/uDq1OF098vY3KhlYunF4Y9jLsweB2K+Ys2MHGsgbOnNSPKUXhS+vpCu+u2MN3W6o4dlQePxqZFzXKLFgDK5r4IeiqcLO9spGF26s5bGgO/TIjZy5USjFvUyU1TW0cNzo/onrNNbe5+GBVCfkZSRw6NDui5oid1U18vamSmYOzGBymPpn+mL+1it17mzluTH5YW7Z0pM3p5sPVJaQnxXHU8LyIig6V17Xw+fpyJhZkMqqvdQ2h7aRHBpaInA4cYf76pVLqvRDL1yO00tJoNJqDi+4YWFpXaTQajcZO/OmqTvNEROSfwK+AtebjVyJyZ+hF1Gg0Go2me2hdpdFoNJpIIZgY9cnARKWUG0BEZgPLgN9bKZhGo9FoNF1A6yqNRqPRRATB7nTO9Hoe2Tv+NRqNRvNDJdPrudZVGo1GowkLwUSw/gEsE5G5GBWajgBusVSqLrJkyZJKEdnRw3+TA1SGQh4biBZZo0VOiB5Zo0VOiB5Zo0VOiB5ZQyFnURc/r3VVZBEtckL0yBotckL0yBotckL0yBotcoKFuipQmfaHgBeUUt+KSF9gmvnWQqVUaQ+FiThEZHG0VKyKFlmjRU6IHlmjRU6IHlmjRU6IHlntlFPrqsgkWuSE6JE1WuSE6JE1WuSE6JE1WuQEa2UNFMHaCNxjKqxXgBeVUsusEEKj0Wg0mm6idZVGo9FoIgq/e7CUUvcrpQ4BjgSqgKdEZL2I/EVEhtsmoUaj0Wg0ftC6SqPRaDSRRqdFLpRSO5RSdymlJgEXAGcC66wWLAw8Fm4BukC0yBotckL0yBotckL0yBotckL0yGq7nFpXRRzRIidEj6zRIidEj6zRIidEj6zRIidYKGunjYZFJA44CTgfOAb4EiMF422rhNJoNBqNpitoXaXRaDSaSCFQkYvjMLyAJwMLgZeAt5VSjfaJp9FoNBqNf7Su0mg0Gk2kEShF8FbgO2CUUup0pdQLB6vCEpETRWSDiGwWkYgp6ysiBSIyV0TWisgaEfmV+fptIrJbRJabj5PDLSuAiGwXkVWmTIvN17JE5FMR2WT+7B1mGUd4HbflIlInIjdEyjEVkadEpFxEVnu95vMYisED5nW7UkQmh1nOf5l7X1aKyJsikmm+PlBEmr2O7SN2yRlAVr/nW0RuNY/pBhE5Icxyvuwl43YRWW6+HrZjGmBeCtd1+oPQVZGqpyC6dFU06ClTpojVVdGipwLIGnG6Klr0VABZta7qiFLqB/0AYoEtwGAgAVgBjA63XKZsfYHJ5vN0jGpZo4HbgN+GWz4f8m4Hcjq8djdwi/n8FuCucMvZ4dyXYvQwiIhjitG7ZzKwurNjiOGx/xCj589MYEGY5TweiDOf3+Ul50Dvz0XIMfV5vs37awWQCAwy54bYcMnZ4f17gT+H+5gGmJci7jo9WB6RrKc6uSYiYl7tIGtU6Smv8x8xuipa9FQAWSNOV0WLnvIna4f3ta5SqvMiFz8ApgOblVJblVJtGOklZ4RZJgCUUiVKqaXm83qMDdv9wytVlzkDmG0+n42x8TxSOAbYopTqaePPkKGUmgdUd3jZ3zE8A3hWGcwHMsUoVR0WOZVSnyilnOav84EBdsjSGX6OqT/OAF5SSrUqpbYBmzHmCMsJJKeICHAu8KIdsgQiwLwUcdfpQUTE6ik4KHRVJOspiDBdFS16CqJHV0WLngKtq4JFG1jGwd7p9fsuIlAxiMhAYBKwwHzpF2YI86lISGcwUcAnIrJERK41X8tXSpWYz0uB/PCI5pPz2X8SiMRjCv6PYSRfu1dieII8DBKRZSLylYgcHi6hOuDrfEfqMT0cKFNKbfJ6LezHtMO8FI3XabQQNccwCnRVtOkpiA5dFa33f6TrqmjSU6B1VTvawIoCRCQNeB24QSlVB/wPGAJMBEowwrGRwGFKqckYlbyuF5EjvN9URgw2cNlKmxCRBOB04FXzpUg9pvsRScfQHyLyB8AJzDFfKgEKlVE++0bgBRHJCJd8JlFxvr24gP0XWGE/pj7mpXai4TrVhJ4o0VVRo6cgOnVVpB1Df0SBror4c+0DratMtIEFu4ECr98HmK9FBCISj3FhzFFKvQGglCpTSrmUUm7gcWwMDQdCKbXb/FkOvIkhV5knxGr+LA+fhPtxErBUKVUGkXtMTfwdw4i7dkXkcuBU4CJz4sJMY6gyny/ByBcPawPYAOc7Eo9pHHAW8LLntXAfU1/zElF0nUYhEX8Mo0VXRZmegujRVVF1/0eDroomPQVaV3VEG1iwCBgmIoNMT9H5wDthlgloz2V9ElinlPq31+veOaE/BlZ3/Fu7EZFUEUn3PMfYRLoa41heZn7sMiBSetLs52WJxGPqhb9j+A5wqVn5ZiZQ6xX2th0RORG4CThdKdXk9XquiMSazwcDw4Ct4ZGyXSZ/5/sd4HwRSRSRQRiyLrRbvg4cC6xXSu3yvBDOY+pvXiJKrtMoJWL1FESPropCPQXRo6ui5v6PFl0VZXoKtK7aHxWGyh6R9sCoHLIRw7L+Q7jl8ZLrMIzQ5Upgufk4GXgOWGW+/g7QNwJkHYxR1WYFsMZzHIFs4HNgE/AZkBUBsqYCVUAvr9ci4phiKNISwIGR/3uVv2OIUenmIfO6XQVMDbOcmzHylz3X6iPmZ882r4nlwFLgtAg4pn7PN/AH85huAE4Kp5zm688A13X4bNiOaYB5KeKu04PpQYTqqU6uiYiYV73kjBo9ZcoVkbrKz5wakfe/H1kjTlf5kTPi9JQ/Wc3Xn0HrqvaH30bDGo1Go9FoNBqNRqPpGjpFUKPRaDQajUaj0WhChDawNBqNRqPRaDQajSZEaANLo9FoNBqNRqPRaEKENrA0Go1Go9FoNBqNJkRoA0uj0Wg0Go1Go9FoQoQ2sDQajUaj0Wg0Go0mRGgDS6PpIiKSLSLLzUepiOw2nzeIyMMWjXmDiFxqPr9dRI61Yhwf454qIrfbMZZGo9FoQoPWUxpNeNF9sDSaHiAitwENSql7LBwjDqNB32SllNOqcfyMLebYhyqvjvcajUajiQ60ntJo7EdHsDSaECEiR4nIe+bz20Rktoh8LSI7ROQsEblbRFaJyEciEm9+boqIfCUiS0TkYxHp6+Nf/whY6lFaIvKMiJxjPt8uIn8VkaXm/x7pQ67LReQtEfnU/PwvRORGEVkmIvNFJMv83C9FZK2IrBSRlwCU4YH5EjjVgkOm0Wg0GhvRekqjsQdtYGk01jEEQ+mcDjwPzFVKjQOagVNM5fVf4Byl1BTgKeDvPv7PocCSAONUKqUmA/8DfuvnM2OBs4Bp5hhNSqlJwPfApeZnbgEmKaXGA9d5/e1i4PBOvqtGo9Foog+tpzQaC4gLtwAazUHMh0oph4isAmKBj8zXVwEDgREYCuVTI8OBWKDEx//pC6wLMM4b5s8lGMrJF3OVUvVAvYjUAu96yTLefL4SmCMibwFvef1tOdAvwPgajUajiU60ntJoLEAbWBqNdbQCKKXcIuJQ+zY8ujHuPQHWKKUO6eT/NANJnY0DuPB/T7d6PXd7/e6RBeAU4AjgNOAPIjLOTPdIMmXQaDQazcGF1lMajQXoFEGNJnxsAHJF5BAAEYkXkTE+PrcOGGqlICISAxQopeYCNwO9gDTz7eHAaivH12g0Gk1EovWURtMNtIGl0YQJpVQbcA5wl4isAJYDs3x89EMMj52VxALPm2kiy4AHlFI15ntHA+9bPL5Go9FoIgytpzSa7qHLtGs0UYCIvAncpJTaZPO4+cALSqlj7BxXo9FoNNGF1lMazT60gaXRRAEiMgLIV0rNs3ncaYBDKbXcznE1Go1GE11oPaXR7EMbWBqNRqPRaDQajUYTIvQeLI1Go9FoNBqNRqMJEdrA0mg0Go1Go9FoNJoQoQ0sjUaj0Wg0Go1GowkR2sDSaDQajUaj0Wg0mhChDSyNRqPRaDQajUajCRHawNJoNBqNRqPRaDSaEKENLI1Go9FoNBqNRqMJEdrA0mg0Go1Go9FoNJoQoQ0sjUaj0Wg0Go1GowkR2sDSHHSIyIciclmYZRgoIkpE4sIph0aj0WgiE62rNJqDF21gaaICEdkuIscG81ml1ElKqdk9HO82EXm+J/8jiDEuFJHFItIgIiWmsj3MyjGDRUQuF5FvLPrfz5vft05ENorI1Z18/tciUmp+/ikRSbRCLo1Go+kpWlfZS6ToKlMOl3mMPI+jrJBLEx1oA0ujCQMiciNwH3AnkA8UAg8DZ3Tjfx3geYxwb+Q/gIFKqQzgdOBvIjLF1wdF5ATgFuAYoAgYDPzVLkE1Go3mh4zWVcHpKpPvlVJpXo8vbZFSE5FoA0sTdXg8ViJyj4jsFZFtInKS1/tfenuaRORKEVlnfvZjESnyem+MiHwqItUiUiYivxeRE4HfA+eZXqgV5md7iciTpkdrt4j8TURizfdiTXkqRWQrcEoA+XsBtwPXK6XeUEo1KqUcSql3lVK/Mz/zjIj8zetvjhKRXV6/bxeRm0VkJdAoIkPNNI+rRKQY+CKI765E5DoR2SQiNSLykBiMAh4BDjG/f033zpRvlFJrlFKtnl/NxxA/H78MeNL8m73AHcDloZRHo9ForEDrqh+UrtJo9kMbWJpoZQawAcgB7gaeFBHp+CEROQNDAZ0F5AJfAy+a76UDnwEfAf2AocDnSqmPMLx1L5teqAnmv3sGcJqfmwQcD3iU4zXAqebrU4FzAsh+CJAEvNmN7+3NBRjKMdOUC+BIYBRwQqDv7sWpwDRgPHAucIJSah1wHfu8cZm+BheRh01l5+uxMpDg5t82AeuBEuADPx8dA6zw+n0FkC8i2YH+v0aj0UQIWlf9MHQVwCTTcN0oIn+SyI7OaSxGG1iaaGWHUupxpZQLmA30xUhf6Mh1wD+UUuuUUk4MZTTR9I6dCpQqpe5VSrUopeqVUgt8DSYi+cDJwA2mF68c+A9wvvmRc4H7lFI7lVLVGKkF/sgGKk15esID5njNXq/dZsrXTODv7uGfSqkapVQxMBeYGOzgSqmfK6Uy/TzGd/a3QDpwOPAG0Orno2lArdfvnufpwcqp0Wg0YUTrqh+GrpoHjAXygLMxjMrfBSuj5uBDG1iaaKXU80Qp1WQ+TfPxuSLgfo+3CqgGBOgPFABbghyvCIgHSrz+16MYkykYXsWdXp/fEeB/VQE5IfBu7ezktUDf3UOp1/MmfB9DS1BKuZRS3wADgJ/5+VgDkOH1u+d5vZWyaTQaTYjQuuoHoKuUUluVUtuUUm6l1CqM1MpA0UHNQY42sDQHOzuBn3bwWCUrpb4z3xvs5++Uj//TCuR4/Z8MpdQY8/0SDCXooTCATN+b/+vMAJ9pBFK8fu8ThIwdXwv03TvD1//eDxF5RPavmOT9WBPEGB7i8J/XvgaY4PX7BKBMKVXVhf+v0Wg0kY7WVdGtq3zJdUAqqOaHgzawNAc7jwC3isgYaN/8+xPzvfeAviJyg4gkiki6iMww3ysDBopIDIBSqgT4BLhXRDJEJEZEhojIkebnXwF+KSIDRKQ3RuU7nyilaoE/Aw+JyJkikiIi8SJykojcbX5sOXCyiGSJSB/ghhB/984oAwaISEKA73Gd2r9ikvdjjK+/EZE8ETlfRNLE2Gx9AkYqxed+hnkWuEpERotIJvBHjP0FGo1GczChdVUU6yrzmOSbz0cCfwLeDvI7aA5CtIGlOahRSr0J3AW8JCJ1wGrgJPO9euA44DSM9INNwNHmn75q/qwSkaXm80uBBGAtsBd4DSOfHuBx4GOMIgxLMXK1A8l1L3AjhsFQgeHB+wXwlvmR58z/tR1DWb7cxa8e8LsHwRcY0aNSEans6tiBxMJIsdiFcQzvwdgr8A6AiBSaXsVC8zt8hLExfC5QjJHO8pcQyqPRaDRhR+uq6NZVGK1EVopII0YhjDcw9pJpfqCIUp1GVzWaqEJE5gFPKKWeDbcsGo1Go9H4QusqjebgpdONiyKSBxyKsTGyGcOzsFgp5bZYNo2my4hICkau+rZwy6LRaOxD6ypNNKF1lUZzcOM3giUiR2Pk5mYBy4ByjH4IwzE2+b0G3KuUqrNHVI0mMOYCazPwLnCx0uFZjeagR+sqTbShdZVGc/ATyMD6F/Bfs+dAx/fiMPoyxCqlXrdWRI1Go9FofKN1lUaj0WgijUAGVh+lVKnPNzUajUajiQC0rtJoNBpNpBHIwCrFyGF/EXhdKVVjo1xdIicnRw0cODDcYmg0Go0mRCxZsqRSKZXb2ee0rtJoNBpNuPCnqwIVuegPHAucD9wpIvMxFNjbSqnmUAglItuBesAFOJVSU0UkC6PM50CMsp/nKqX2Bvo/AwcOZPHixaEQSaPRaDQRgIjsCPKjWldpNBqNJiz401V++2AppVxKqY+VUldgdP1+CjgD2CYic0Io29FKqYlKqanm77cAnyulhmE0dPPbBE+j0Wg0P2y0rtJoNBpNpBFUo2GlVBtGw7p1QB0wykKZzgBmm89nA2daOJbGRnShJN/o4xLZ6PMTPWhdpdFoNJpIIKCBJSIFIvI7szv4e+bnT1dKTQ7R+Ar4RESWiMi15mv5SqkS83kpkB+isWxDKcW5j37PYXd9wSuLd4ZVlj+8uYpRf/qIW99YSYvDFTY5WhwuZv3zC6bc8WnYj8lXGysY/scPOeOhb1m7J7yVm297Zw0j//QRv355OQ2tzrDJ4XS5Oepfc5l0+yc89U1427Is31nDyD99yIn3zWPJjuqwynL/Z5sY8cePuO65JVQ3toVNDrdbccaD3zDx9k+4/7NNYTX6tlQ0MO4vH3PUv+Yyb2NF2OTwRuuq4FFKcfETCzji7rm8vXy37eM/9/12Rv3pI66fs5SaJvvvqTveW8uYP3/E799cFRadeP0LSxn1p4+466P1uN323sdut+L0B79hyh2f8vi8rbbPIy0OF0fcPZdD/vE5ry3ZZevYAOX1LUy541OO+tdcPl9XZvv4m8rqGfuXjznxvnks3m6/bvt+SxUj/vghZz70LRtK620f/50Vexj+xw+5+IkF7K4JSfZ2l3ji660M/+OHXPfcEvbaoM/9Glgi8h3wDZAHXKOUGqGUuk0ptT6E4x9mKsCTgOtF5AjvN83eED5nABG5VkQWi8jiiorIUPIeKhvaWLitml17m7nptZV8v6UqbLLMXV9Os8PFiwt38rf314ZNjtpmByW1LVQ1tnHTayv5elP4ztm3mytpc7rZvbeZy59eSG2zI2yyfL2pglanm3dW7OHWN1aFTY4mh4vtVU3sbXJw+3treWfFnrDJ8t2WSlocbirqW7ni6UWU1bWETZavN1XQ5nLzxYZyfvXSsrAZNjXNDlbsqqWmycF/PtvIc/OD3Z4UeoqrmqhvdbK9qolrnl3MtsrGsMkCWld1lboWJ99srqS4uokbXl7O0uKA28ZCzhemTvpkbSm/fXWFrWMDfLmhnMY2Fy8sKOYfH6yzffy1e+podrj435dbeOzrrbaOXd/iZOWuWqoa2/j7B+t4y2YDe2tFI8XVTZTUtvDbV1fw3eZKW8dfs7uOqsY2tlc18bPnl9puZCzavpeGVifbKhu54plFlNbaq9u+31pFq9NNcXUTVzy90Han7rebjLXXip01XD17MU6XvT3g55njf7GhnF+9vNxyfR4ognULMFAp9Tul1BIrBldK7TZ/lgNvAtOBMhHpC2D+LPfzt48ppaYqpabm5nZaaMpWHOZF89fTx9AnI4kH524KmyxtLjcXzijk0kOKeHHhzrB4DQDanMYx+duZYynISubfn24MixweWTKS4njysqmU17cyZ0H4FqstDjdnTe7Pz48awrsr9rCpzH6vEoDDPD9/OW00Y/pl8J9PN4bNmHA4jXFfue4QGttcPBnGiFqL08XRI3K5+cSRfL2pksU77F2MevDcP3//8VgOGZzNf7/YTKszPBHpNnN+e/qKacTGCA9+sTkscnihdVUX8Oinm08cSVZKAo98ucXW8VscbqYPzOLXxw3ns3XlrNhZY+v4TrfijIn9uHhmIXMWFFNuswOnzWnM+ceMzOPhuZtparNvkeu5d287bTTjB/Tivs822RpF81x7D104mf6Zydz3mb1rI8/3n3P1DBLjYnhwrr1zl+f7v3DNTJraXDz5jb0GtsPlJj5WeOySKeypbeGlhQe0DrR8/AG9k/nH2eNYV1LHR2vs7a7hcLqZNrA3N50wgnkbKyx3LgUqcjFPKaVEZJCI/FtE3hCRdzyPng4sIqkiku55DhyPUWr3HeAy82OXAW/3dCy78dxEGclxnDutgO+2VFHV0BomWRTxMcI1hw/G5Va8vzI8kQnPxJaeFMelMweyrLiG4qqmsMjicLlJiIthQkEm0wdm8fay8EVrWp0ukuJjuXzWQGJjxHaPogeHy1CySfGxXDZrINsqG1lm88JnnyxuYmOEIblpHDsqj7eX77Y9lcZDq8NNUnwsF0wvIDUhljeWhuf8eAysxLhYrj58EBX1rXwXpsi4Z34bkJnM6RP68dHqkrCmH2td1TU85693SjxnTe7PF+vLbfVkO1xu4uOES2YWkRAXw9vL7Z1/HU438bExXHXYYJxuZXu03uFykxgXw1WHD6KuxcmXG+yLajrd5jwSH8uVhw5iR1WTrRFMz/hpSXFcPLOIhdur2bXXvnWA09RzuemJnD1lAB+vKbXVwPXce0Pz0jhuVD5vLd9jq25zutzExcQwdWAWEwoy7b/33Ir42BhOGtuXfr2SeMvmtZfTbXz/C2cUkpIQy5vLrNXnwRS5eAujBO1/gXu9Hj0lH/hGRFYAC4H3lVIfAf8EjhORTRild/8ZgrFsxXMTxcXEcMzIPJSCrzfZGwr34HS5iYuNoSArhVF9M/hsnU8nq+V4jklCbAwnju0DwGdhyIH2yBIfa1z6x4/JZ0NZPTurw2PstTrcJMXFkp2WyJSi3nwe5vMTHxvDCaP7IAJf2aj4O8oSFyMAnDCmD2V1razeUxsWWVpMAzglIY7Dh+Uyd315WCJ7be3nRzh0aA4pCbFh2UMAHa6VsX1obHOxcFt498qZvIXWVZ3iiRDHx8Zw1Ig8nG7Fwm32GesOtyIuJob0pHgOG5rD5+vtvY6NRZ4wKCeVoXlpfGXzPsI2U/9MH5hF75R4W/Wgx8CIixGOHplHbIzYauC1tV97wvFjjC2Lc9fbp/M8Bl5cjHD86HzanG6+sXFt5nTv//0r6u3VbQ6XIi7W0K3Hj85n1e5aW1PwnWYELTZGOHZ0Pt9srrDVOef5/ikJcRw2NIcv1lmrz4MxsFqUUg8opeYqpb7yPHo6sFJqq1JqgvkYo5T6u/l6lVLqGKXUMKXUsUqpiNDcXaHNS4GN69+L1IRYltmc5+7B4d53Qx06JJvlO2vaveF24hkz3jT2+mcmsyRM6VYOl2o3sA4dmgMQNllanC4S4w1ZDh+aw/rS+rDsCfNewPdKiWdMvwwW2Ljo6ihLgnl+Zg0xzs/i7WE6Pw43Seb5OWxYDqV1Leystj/Ndl8EK4ak+FimDswK2zFpX6DHxTBtYBYxAovCsGHbB1pXBUH7vR4Xw5Si3sTHCgu32XcteSJIALOGZLOjqomKevsyPJxeDrbDh+WwcFt1u9PADjzfPy42humDsmzVPZ5znxAXQ6/keCYM6MX8rfbN8x4DJz42hiG5afTtlcQiG+cx73XI1IFZJMTF2Jr27fRyvh9mrj3s/P5O975r/7AwrH0cZgQNjLVXi8PNGhsNTO/vf/iwHPbUtrBrr3X6PBgD634R+YuIHCIikz0PyyQ6CGiP1sQJMTHCmH69WLk7PB54p8tNvHlBTyzMpM3pZn2p/ZXzHF5KHWByUe+wGTVtphcFYHh+OilhMoBdboXDpUiKiwVgQkEmAKvDcK14RxgBphZlsXxnDa4wpOYZKUSGHH16JdGvV1LY0hVbHS4SzfMz0Tw/K3bZL4v3wsgjy8ayehrDUHnS2xhPS4xjTL9eYTP2OqB1VRDsu9eFpPhYhuals7bEPp1gpGgb8++kwkzAqBxq3/iqfZE3sSCTVqebTWUNto7vuY8nF/ZmR1UTlTZtIdgXwTLGn1CQyZo9dbbN894RNDCOv53nfl8EKYaEuBjG9Muwdfw2174IVl5GEn17Jdm6B9HhVO1rn1F9M0iIjbH93vOMP8nUp8t32hjB8/r+U4qyACxNkQ3GwBoHXIOR/uBJubjHMokOAry9NADjBvRi7Z462yumuNwKt9onx74Fov0LeE9UL8FLltK6FtsUizfeHtTYGGFc/14sD8Mx2Wd0Gjf8+AG9AHsXG+2yeEVdAUb3y6DF4WZHlf0V4pxekzAYjoGVYTBqwIymmYuhEX3SSYiLsX1TPuyflgeGcnIrWBUBxviYfhmsL62LhH5hWlcFgbcXH4zzZ2e7Cqd7n4Ezpl8vYmPE1vvb4eVgG9ffmHPtcmoppdpTBGGfTrbrPm7fvhC7T+c0O1xsqbDHwOw4j00oyKS4usm2FhjODt9/woBMVu2qtdHANNLfRfYZmHY67BzufRGkhLgYRttsYDrdxpYVIDwGptf4I/qk84+zxjFtYJZl4wVjYP0EGKyUOlIpdbT5+JFlEh0EtHVYrI7ok06r0217Bb+Ok2n/zGTSEuPYHIZKdW1eUT2A4flpAGwMgywOr0UzwMg+6Wwpb7B9gdjuTTMnvMyUBPpnJoflmLR1iDCO7psBwPow9MrwXoCAEWUsrm4KSyEFl1sRa3pb42NjGJGfzoZwnB/n/kbNyL7pAGGpOtlxkTSiTzp7mxy2pnn5QeuqIOh4/kb1zaCyodW289fm5eBKio+lKDvF5gjSvvEHZqeSlhhnW5qSp5hQglcGBcBmm76/R+d45pGx/QwD0+7v7zn+I/vYO4+1jx/jufbTaXa4bCu04fTasgHG3Flc3URzmz26raPzclTfdDaW1du29jGix97jZ9i63nGaRd/AcK5fML2QfpnJlo0XjIG1Gsi0TIKDEIdXCg3A4JxUwOgBYSfeGyoBRIQheWlsKrdPmXlwdPCatiuWcMjitQcLYGh+Og2tTkptLtfrMif7WK8JZ0heWpiOyf7X7NC8NGIE1tmYOrRPFtW+AAAYlpeOUtjmZfXG8LbvOz9D89LYEobz025geVInM5IMZ0mY7h/Y38CC8BjjHdC6KgjaOhhYg3MN/bTdpmi1dwQJYFheGpvK7bl23GZWh2eRGxMjDMlNZYtNutnRIdW3d2oCOWmJti0yOzpdi7JTiY0R29Ym7UUmvPQMwGabI2gHjG/TPOrw2rLhGd9O3eYdQQIYkptGTZODKpsiiB2d20NyU9la2WhvBDE2GLMnNAQzUiawXkQ+DmXp24OZjh7CQR4Dy+aGnN4bKj0MzQ3vAt5zc+WlJ5KRFBe2CFZHBQ/Y6kWFA5UNGOdnS0WD7WXJO16zhmc5NSxGjXcKJ8CwfHuVoAe3W6FUBwM4N5U9tS22733qeH5EjIWhXQsTb/almBnHZYTpLAnHvdyBTLSu6pT2KIo5Fw/KNg0sm/ST072/g2tYXjrbq5psKb7k6JC+DzA4N42tNt1HHdMzwWNg2mxgeKWJFWal2JgiuH8EqV+vZJLjY22b2z1O53YDK9deR6/TtX8Ey2Pg2Xn8OzoMwebv32H8Nqfbtgiip4KoXcQF8Zm/WC7FQUbHxVBWagK9kuNtm8T3ybGv2peHYflpvL50F7XNDnolx9smS0evqYgwLD/ddqMGjPOTmrjv0m83sMobOGK4fY1APV6bGNl/wmlxuNlT28yA3im2ydLxmgUYmJ3C9kr7y9c7XO79lNBA08tq97XiUvtvyAbD4wewrbKRseb+DVtk6bAwACPa+e1m+9s/eBwUnn0EWakJZCTF2RYBCYDWVUHg6JBu2r93MrExwg6b+hL6cqC43IptlY3t0VDLxnbtn9UBRobJm8t209TmJCUhmCVRT8b3YWDlp/HG0t0opdrvKatw+vj+Q3JTbYtgddx3HBMjDLUxa6N9fNPA65UST05aoo0G3v4RlEE5qcSInQZOx3tvn4E5c3C25eM7OkSQvA28ItPRYyWePmB20elI3uVuQ1n69mCmrUMKjYjRc8PuFMF9k8n+ygSMBaKddNxDAlCUnUJxGPpPdUwRzE5LpFdyvG0eXA++F/DG+bE7WuPdn8RDUXYqO6oabd+bZrQW2Hd+EuJiKOidzDabF/AeoybWa0IeYrPHz0O757WD96+srtXWJrGw/x4WMOa3gTmpti3Q/aF1VXB0XOTGx9p7f7V1yCDwZHjYYaD7yuoYlGufTuxYDRQMB1JDq9OWQg++DLzBuWm2pWn5Ov52GnhOl7GnNma/edS+TI025/7p74lxsbZHEL3vvX69kkiOj7UxRXH/8T0RRHu/fwQZWJqu4+iQQgOGErHbmGgvibqfUWMoE7tl6ZiWAlCUlUppXYvtxQs67qsBw9jbEabz452C5lls2L1Y7VgZziNLY5uLCpsrPbrc7v2cAgCF2am2N4P2ZdQUZacgYr+DwpexV5Rl3su2XysHKinDGA+vgaUJjo7ZBLDPmWIHHTf6F2YZkXo77u+OxXwABucYThM7Fvn+HI2ALfrH4TowEj44J5U2p5s9NhTh8hVBHJiTyp7aZlqd1q8DjCp6++uWgdn2rc2MCFaH8W10TnWMIImI4ei2afyOEaReKfH0Tolnu43f384UQW1gWUDHMu0ABb2TKalttrehoftAQ8+jzIptjga0mZNnfAfFohS25d96cPmY5AqyUmxfwPtK+8pNTyQ5PjZsBlbH8wPhMPbUfkYnQGFWsu1y+CpCkhgXS9+MJPudJT6MvfZ72WZZOlZ5BCjKSmF3jb3zm6Z77Ktkd2A6sNXRaqUULq8y7WBUT81IirPl/m5PkYvxXuDbdx/5cjTu08k2fH8faxOP09WW4+9zfGMdYEcDd6MP0v5zV2F2CpUNbbZkAnTcgwTG3Lmjyvp7Dw6MIIFx/O0rcOPr+KfaZ+B1cO5YjTawLKBjiiAYC3i3whYvkYeOTQUBkhNiyU1PDFsEaz9jLzs8C0SnW+0XCQBjktu1t8nWxrpOH1GJdo9SdZjSSeP2j2BBeKI1HSfBoqxUapsd1DY5bJPDsxg4wNjLTrG9P5jLhyz7DCybrxWnu73MtIei7BRcbsXuvfa2otB0HV+FFgptSlNz+XAUGOPbky7u9KGbUxLiyElLtOWe9uXIKsiyz5Hla3w79bCvCNq+rBobUkR9RZDaDUx7zr+v6L9dKaK+9iANzE5lZ3WzLWsfXxGkoix7DDxfzh2r6XQkETlURD4VkY0islVEtonIVjuEi1Y6biKGfZOoncZEx9LbHgqz7N/75Cv3vNBGxeKNy0eKYGFWCg6XoqTWvgVie9qXHCiL3cekzYcB3D8zmbgYsX1vmtPHJBiO+8ezR66jgVWUFYZ0Xx8L014p8fRKjg+Ds8S9nyEORpoL2Ffq2xdaVwWHL71QlGVPmlq7U8mHA8WO69ijhzousguzkm0Zv9XH9oGk+Fj62BQVbzdwvOaRPhlJJMTGsMMGA6djkQnYd+3ZUVDJqKLXIYJi4zrEVwTFkyliR5pcxz1YYBjYbS63LW1qfH3/gdkp7KlptryKqC8nv9UEY8o9CfwbOAyYBkw1f2r80HETMYQnnceXtwqMCc3+fRsHTqzZqQmkJtifDuf0mYJmX5pGuxx+IiSe/WB2lmr35RSIi41hQO9k2/emuXzkyReFIdoZyNtuV0pJR1l8XbfFNqTWeON7D1Z4nCUd0LoqCHxFq9vT5Cw+f74cBWA4UOzIIPCVogZGFMGWFDUfjkbwRPDsKPJxYAQvNkYY0DvZlhR5p0sRI+xXZCIrNYG0xDibIpg+Iig2zl0OHxGkfbrNpgjeAdk79kbwDjBws1NxK9htcXbXvrY4ERTBAmqVUh8qpcqVUlWeh+WSRTEde00A5JteIjsmcQ8dez54KMhKoaSuxZZNpR7anMai2XtiFREj/9b2aMCBC/hwpCua97sPWYxNx2X19jU+9muM27j53YMvA7g9jcbGdDhfRUhgn0K0c8+er3RfMBdmdu+n9JHmkpuWSEoYnCUd0LoqCNqzCbzO4YDeRvEWq8+fy991bFMGgcN5oIEBxvyyp9Z6L7qvIhewbx+O1Th97MsGT9qzDQaG+8BGr560eFuqSPqIoKQnxZOdmmCLgeMrRc6ue88Y338EzQ7nss8UwXYD19rj77n3O663rCQYA2uuiPxLRA4Rkcmeh9WCiciJIrJBRDaLyC1WjxdKfKVbxcYI/W3yEnkItEA0ikvYZ+x17ODdLktWOPazHLiA79srmfhYsTVa0x7B8pGTDPZGA/wZWAOzU9hhw+Z3b3ztwUpLjCMnLcHW+8dXERLw9vjZL0vHa6UwK4Vde+3Jn/fQ5mMPlrFIst8Y74Dtuioa9ZQvI8OTpma1A8NXc3WwL0Lt8DN+YZahE632ovubZwuzUiivb6W5zVqnp8fA62jkFJpZLVbP806XOsC4BGyrZOfLOeQZ344URaeP6H9SvFE4ya4IWsfj3y/TWPvYkaLo6/vbtd7x3Pu+1qFWEcxIMzBSLe4E7jUf91gplIjEAg8BJwGjgQtEZLSVY4YSYyOhHNA0sCArhZ02Vszzlw4RnnRF3/0HirJT2Lm32dZ0OF9l2o00CXv3pvlLQfNsurUzXdGXUwCMCFa9TRtwPbh8FCEB4/6x06jxVYQEvKOdNkbT/FwrRVkpON3K1uI5vjZqg2GM292rrAO26qpo1VMOl5vYGPGdbmp1BCtAqivYkKLoo4Ki9/iWe9EDpAiC9TrZM4/4+v71rU5qLC4i1LGJvIei7FR22pEi6nLvt03Be3xb9sB16PHoPb4dzimnjwhWbIxQ0Nv6FFWllBlB7JD9YFPlZH9ZIFYSTKPho308fmSxXNOBzUqprUqpNuAl4AyLxwwZbU7f0ZqC3vZspPXg9LGhFbwmcxsXq61Of54jsweHncUlXP4X8PbuwfK92OiXmURcjNiaDucJ3Xd0Cnj2ZtjVpwJ89yoB+4t/+CtC0is5nsyUeJtl8VPR0MYeQh78GVhFZq8yO6Np3oRBV0Wlnmpz+b6/7OgF6PDjKOjbyzPnWTx+e/p+eO6jVh8VHMG+ZssOp/8IHtgQQfRRZAIMR5HDZb2jyOlS++2N91BopohavW3C6Tow+g9mBM+OPWhu33O3HSmi+4x7X9kP1ht4/oq+WYlfA0tELjZ/3ujrYbFc/YGdXr/vMl/zlu9aEVksIosrKiosFqdr+EuHK8xKoabJQV2LPaWm/aUj5KYZHgO7C274mlg8C3i7IxO+vGgDzTxwu9Lh/C3g42Jj6N872V6jJoABDPZsgPXg8rEHyyNLiU0NKcG/tx3MQjG2ppP6qThpY5NSD20udUAVQTDuHzsWSR0Jo67qVE+ZckWUrvLnACzKTqWivpWmNuuKt+zrLbf/+HGxMRRmpVhesdRXNVuAvPREEuNibDEwwMceLHOetfr7+zNw2+d5qyNofhq92hXBa/NRZAGMdYgdvbh8FXkA+wontfnT8zb04mp3bvgy8GxwnvpbD1tJoJFSzZ/pfh5hRSn1mFJqqlJqam5ubrjF2Q9/eb4FNnub/RW5ELGvapAHf0ZnOHot+dqDBUZqXn2Lfelw/s4P2JOu442/qERB7xRixN4Ilq9miACDcoxecnZdt/5SOMEoRGJ3NK1j9S3Yt3fQVmeJjz1YYG/D0g5oXdUFWp1uEv04AMHaRa6/IgtglPq3Wg84/ESQYmLEyGCwKYLWURf2So4nKzXB+giWuQfnwO0LyYD1c6t/56Y9ETynjzLlAIVZ9vTi8pWiB/b14vKnW+3oxeWrRYCHgTmplldODrTesoo4f28opR41f/7VNmn2sRso8Pp9gPlaVNDm9L2R0zsNYUy/XpbL4auaoQdjP5h9nmZ/npP89CSS4mNs7bXkq4og7G/sZaclWi6H288eHzBSBlbs3GO5DB78OQUS4sxoWgQYwINy0gDYVtnE0Dzr183+ipCA4fH7YFWJX8M09LL4Tq2JjRH6ZdrrLGnz4yzZl07ayGHDcmyTJ4y6Kir1VJvTTWJc7AGve5erHtknw5KxA0WFB2an8v2WKtxudYAjIVS0R5D8GJhWtzxo89EHy8PA7BRbDExfC8yUhDhy061vtuzwsweqT0YSCXExNrQJ8L9/FKzvxeVwH1hkAvbvxWXl2tAw8HyvN8BwpFq19nH6cS6A8f09lZP79kq2ZPyIimCJyB9FJCvA+z8SkVOtEYtFwDARGSQiCcD5wDsWjRVy/C1ACnp7DCx7DBunn8IFhizJ7Kq2rzpcm9NNYvyBxyQmRijKSrWtQanbrXAr3wre7mham5/9AGAsNupanNQ02RNN8+fV9shiZ4qgP2NiULbn/DTYIkcgj1thdgouG4tLOF1u/O3NLeidYq+B5fS9SMhPTyIxLsb2SoJh1FVRqaf86Sc7+uEEuqcG5abS7HBZ2p7CX+EnMBZ5Oy3WiZ705sT4Aw3cgTmp1i/wAziE7EjT8hfBiYkRCnonW74OaPNjYNjVi8vh9P397ejFpZQKWEURrI3gOQIUmbDj+4ej0bDfCBawCnhXRFqApUAFkAQMAyYCn2FUawo5SimniPwC+BiIBZ5SSq2xYiwrMPazHHgSe6XEk5FkT0M9CNxYbUBvo2pQXbOTXinxlsvS6sdrCobne0uFvUaNr0lmQO9k4mLENgOrxWEo2yQfytbbo5WZkmC5LK1+DGAwJr93V5RYLoMHT8+0jvRKiad3SjzbbCinC/sWQ52dH09qnLWy+L9/CrJS+HhNqeUy7JPF5VOWmBhPPxvbUwTDoquiVU+1OV0+DeReKfH0Sra2eEugrIp9DpRGy7zYgSJIBVkp7WlSVnnxWx3G+L6cWYOyU3lj6W6a21wkJ/i+13uKw+27mi8YUfn5W61tG+er0a2HgTakXRtVBA889yJiGpjWtynwtR6zoxeXJ3rs6/vb0Ytr3x4s/ymSxVVNzBycbcn4zgBzj1X4HUkp9bZS6lDgOmANhgKpA54Hpiulfq2UsmzHrlLqA6XUcKXUEKXU360axwr8eQjB3lLtgbyF7TnXNsliLMr8TKw5qRRX2VN9zGPUJPtYNMfFxlCQZU/DQ9hXUcrXcSmyKSfdg7+oBBiTX22zw5ZomlKKFqf/BcagnFTbIliexVBSoHQqm5wlLQ4XSX4M4IKsZKob22i0eIO0B39FEiA8janDqauiUU8FOn8DLa5m1j7/+ri/21NMLXSg+CsyAfv68Vj5/VudRol8n2lqNlQS9Ld/Eoy1SUldi6VFhBx+9kCB2TTd4giirz5MHgbm2FFowff2ETC+v5XX/r49SAeOb0cvLn8tAmBfFVErr/1AznWrCKZM+yal1DNKqX8ope5TSn2slLK3TFSU4W+/EXjyvO1blIFvD/yA3vYW3OgsBa3N5bYl3arFs2j2cUzAWMBvtSma1m5g+Vg429UXxlsWX2kr4G3s2dMIUin/58eONBoPLe3pPL7T4Yw9A3ZFO90+nQLglXpsk7OkswX6jiprNyv7Q+uq4AjkALS6eEtzAJ3Ur1cyCXEx1hoYARZZdlSyC+hotKGSoNGHyn+mglKwy8K92f6i32B8/6Y2FxUNrZaN3+anDxcYhS6s7sXlLzsDjO9vtXEP/lPkrHaO7WtyfeD4cbExDOidbKnDMhwpgvaZcj8gGtucpCX6zr4syEphl02NdZvMrvApPryF7RUN7YpgOQKkCNoYrdnnQQ2cpmDH+WkNsNhIToglLz3RtghJm9NFot8Ilj1NOAFa2gIbwINzUimta7G0lLSHQOk8MTFia18uI4LlP0UQ7NvbGchZUpSdSqvTTWmddftoND2jqc3l11gvykphd01zuyESajwOLl/jx8SI5YUePAaeL6dJgQ1OxxZHAEejGcGzsll3c4BIeJEN/TGb2lykJvq+9uzoz9nY6iQ1wffazOo2E263otnhIsXP2tDqXlwenZnqZ/wii3thNXrG93P8C7NTrb32zAyPFD/jW4E2sCygoSWwgdXmdFNeb52XxkNTm5Fr78tb1ys5nvSkOBsXZa4AXlP7FojtHlQ/xp4dG609eDxK/lIGirLtK9Xe4vC/B8uzgLcjctTSvu/Jfzqp3bL4cwzY2QurJUCEsaC3PSWWwfCAO93Kr7EXjsbHmq5R3+IkI9nfIsfa4i2BUgTBiCJYvcCOEd8GXnJCLLnpiZZHsPzdO+lJRql2K/VgY6sr4NoErI3gNbW5/C5wPSmaVmZKGAae/2sfrPv+Tea1n+bHwPREEK06/42txviBvn9Vo3W9uJo6Gd/qPqSNbZ7jrw2sqKa+xUl6kn8vBVjfUA8Mj0WKn5sZDI/dLpsiWIGUep+MJOJjxZZoWruB5UfBexarVqZJeKhrcZAQGxMwGrDD4r4c7bI0O8hI9l3sJCneWHjsrrHjmg1sAHvuHzuu24YWQ9Gk+buXbdgz4KG5zUmyH6MzKzWB1IRYW+6fumajSXpGBMxvmu5R1+wgPdH3vT7Q4nRgz/3tN901K5mde627p+pbnKQmxh3QB8qD1Sn8Da1OvwtMMKv7Wngf17c6SUvyfe5z0xJJjo+1NIrR1Or0mVEDxraFGMGytGullJldFDiTxqrv79kj6z+CZG0vrvbx/Rx/q3txNbR/f/+6vb7FSU2Tw5LxGzsZ3wo6NbBEZLiIfC4iq83fx4vIH60XLXqpa3GQ5keB2eltbmjxHw4HjzKz3pBQSlHT7CAz2Xc1vNgYoX9msi2Lsr1mI73efirzDTDPz24bjkttk4NeKfF+lX1RVgplda00t1m36bhdlmYHvfwYWGAcFzuMzr1mIY2sVN/np1+meX5s2K+3t8lBfKz4VUhFWSmW7xnwUN3Y5veaFTGapNoxp9SZRqe/yqP9MpMRwdYeex60ruocpRS1zQ6/zi6r04E993emn+unoLdxT1nV8LSh1X92CVjf4H1vo4PeAar2Wt3suKHF4dfA8FTSs3J8j4Hri4S4GPplJltm3De2uVDKv4Hj6cVl1bVf73HYBUjRA+uyMxo6MfC8K+NaOr6/CKbHwLPo+uvs+1tBMBGsx4FbAQeAUmolRr8PjQ9qmx00tbno08t3mdf+vY0FiB3GRHl9K3kZ/svNeiJYVnvg61qcuNwq4AK+ICuFXTYckypTcWdHxAK+LaCytWPTNRi54bXNDjIDGlgpthyTqgbz/KT5Pj/ZqQkkxcfYYgDXNLWRmZLg3wD2Ki1rNdWNbX6NTjDOjx0ptp5Kkv7u5YS4GPr1srfxsRdaV3VCTZODVqebPn7KoOemG1EMqxZ5lQ2tpCfGdb6f0KL7u6K+lZwAJdgLLa6kt7epjV5+HI1gfP89Nc2WFVro9Ptnp1gWQWlqc1Lf6gy4JjH2AVkzfrm5LzQ33ff4VvfiKje3HeT6Of7ZZiaCZd+/PvD339dsODzjW+3cKa9rIT3J/9xjBcEYWClKqYUdXrOnHnAU4gnv989M8fl+YlwsfTKSbEnnKa1rIc/PxQzGZN7icFvugfcshvtmJvn9zIDeKbZESMpqjZvcn5JJSYijd0q8LcbE7ppm8jP8HxO79rOU1bfgdKt249IX/TOT2VNjfXGW0k6UoIjQLzOZPbX2nJ8+gc6PDc0Rwdi3UtPs8HtMwPrUKg+ee9Tf/AZGtDNMBpbWVZ3gcdZ4IvUdETF6mVm1yC6paen0Ogbr5ryS2mb69go85yplTQaDUordewOPX9DbKLRgRZGYxlYndS3OgD3GPBEsK+aRUlP35qf7//79M5MpqbVm/7PnmPYJcPz7905plzPk49cGHl9E6N/buu/v+b/+dFp6ktGn1arvX1ZrGDj+IkgF7en/1uj20rqWgPeeFQRjYFWKyBBAAYjIOYB9XUejjFW7agEY0Sfd72fsSOdpcbjYXtnIsDz/cgxoT1e0drG6pcLoWzQox39D1rz0RKqb2tqbwVnFhrJ6BvRODtjIsV9mMiUWG1gut2JbRSNDctP8fsazEKlqtNYA3lJuLKYGBmiY2y8zCYdLtUcArWJjaT1piXEBDZv+mcnsrrG+CMmW8oaA12x/0yC1umLe5vIGlILh+f7v5cIsa1OrvGXxjOePP54ymr//eJylcvhB66pOWLGrBoDRfTP8fsbKdOCNZfUBr2PPfV9hQRGoVqeL7ZVNAe9pK7MGyupaqW91Mjg3sB4EqLTg+28sqwf2RQp8UZRtOl0tHD/Q989JS6Sqsc0SR96GUmP8QOc/Jy2BygZr5tANZfUkxMbQ349zAwydX2mRw3tjaT35GYkBU+SsHH9DWT2DAxz7pPhY0hPjrBu/tD7gGscKgjGwrgceBUaKyG7gBuBnVgoVzXyytoy89ESGBJhECmxI51m4rRqnWzGhINO/HDYVDPh2cyVpiXEBFWtOWgJKQbWFzWxdbsX8rdUBj4khS6LlhsTynTU0trmYVOhfFk+UzaoJ38M3myuJjREmFPTy+5nsVEMWKxfwSim+21LJhIJeftPywDgu1RYbndsqG9lT28KUot5+P5MUH0tqQmx7WqNVfLu5EoDxA/yfn329sKydV77bUsmYfhkBHRTjBvQK6GCyEK2rOuHDVaUUZqX4jWAB5KYnWbLI2bW3ia2VjUwMMOdlJMUTFyOWjL9k+17aXG4mFfq/p63MGvjGvI+nFmX5/UyOx8Cy4Pt/t6UKgMkB5jSPgWuF0+i7LVUkxsUwKoBxn5ueiMut2vfqhXr8vr2SAkbwctMTqahvtSSC9/2WKkb3y/BblRYM3WZFRpFn7TM5wLXfPr4FxnVjq5MVO2sD3ntgbA2wYr2zu6aZ7VVNAa99Kwim0fBWpdSxQC4wUil1mFJqu+WSRSGfryvji/XlXDijMOACsTArhdK6lvaStaHG7VY88tUWeiXHc/iwHL+fG2BDxbzdNc28tXw3J4zpE7CDdrZpTFi5WH19yS4qG1o5bXy/gJ/LTk2wVA6lFP/7cgupCbEcNSLP7+eS4mNJS4yzZMLzUNXQyiuLd3LU8FzS/VSXgn1FJ6osTCf9bF05WyoaObWT85Nl8fkB+N+Xm4mPFY4fkx/wc9lpiZZGGBtbnTz7/Q4mFWa2Nwf3RYEN6aSLtlezaPteThnf17IxeoLWVYF5d8Uevt9axcUzA+un3HTDwRTqbIJHvtpCbIxwyjj/109MjFhyfyuleGTeVjKS4jhqRK7fz+WmJRIbIyE3MNqcbp78ZhtF2SmM6effwMhun2dD+/0bWp08P38H0wdmBUxL9+x9DbWDsbyuhTeX7ub4MX0C7oGxyqm4qayeuevLOW1CYN2Sm5ZIm8vdXswnVHy3pZKVu2qDGr+yPvS67d0Veyita+lUtxoRrNCP/9z8HTQ7XJw2IbDuyElLtCR6+/i8rYgQcO6xgk7LaYjIjR1+B6gFliilllsjVnRR3+Lg6W+38+AXmxnVN4PrjhwS8POePPNde5sZmuc/Raw7lNe1cPt7a/luSxV///HYgJNZSkIc2akJlkWwtlY0cM2zi4mPieGXxwwN+NkcCw2sNqeb5+bv4O6P1jO1qDfHj+5s0ZxgWaSmzenmb++v5bN1Zdx60siAhT/AiOxZFU3bU9PMT59bQkOrk98cP6JTOSD0ihfA6XLz6pJd3Pn+Okbkp3P25AEBP5+VmkBTmytg892eyHL/55t4ZfEufnrk4IDeTo8sVl0rq3fX8ue3V1Na18K/z50Q8LOevP4yi9IVF26r5udzllCQlcwlM4ssGaOnaF3lG5db8ez32/n7++uYVJjJFYcOCvj5vPRElDIWuYH2qwSLw+XmwS828/z8Yq44dGC7M8AfoXZaOF1u/v7BOuZtrOAvp40OOGfExAg5aQmU14Vu/MqGVm55fSXrSup45OLJxMQEjs4DVIbw+9e1OPjZ80sorWvhwQsnBfxslidTIYR6eE9NM9c8u5g2l5sbjxse8LP7DKxWRhCaKPjWigaumr2Y9KQ4fnrE4KDGr6hv7VQ3B8uKnTX84oVlFGWncOH0wsDjpyfS7HAZDZFDVO1u3sYKfv/mKiYWZHLi2D6Bx7fAwHl7+W7u+XgDx4/ODyqC5tlSEgqUUjz5zTae+W47lx1S1OncE2qCOYNTzce75u+nAiuB60TkVaXU3VYJF+k0tTmZ/d0OHp23hZomByeO6cNdZ4/vdNHXvnejtiVkBlZ9i4NHv9rKk99sw+Fy85vjhnd6M8O+kHgoKa9r4cG5m3lxYTFpiXE8ftnU9opr/tjnOQudLEopPlhVyt0fr2dHVROHD8vhvvMmBlRwYCiZZofL6CMWoq7fSineW1nCvz7eQHF1E1cfNohrO5nswZoJr7HVyWPztvLYvK3ECDxy8WRGB/CqgjURLKUUX26o4M4P1rGpvIGpRb154IJJfhtSe2j38ja2td9LoZDli/Xl/PPD9Wwqb+DcqQP4XSdGJxiGZ6j3g+2paeaejzfw5vLd9EqO5z/nTWTG4OyAf5ORFEdCXEzI00s2ldVzzycb+HhNGYVZKTx9xbSAkc4wo3VVBzaW1XPz6ytZVlzD0SNyeeCCSQEzCWDfPqCK+tYeG1hr9tTyu1dXsrakjjMm9uP3J4/q9G9CuQ9mfWkdv3t1Jat213LFoQO5fNbATv8mNz10aVrvryzhT2+vpqHVyV9OG82JYwN70JMTQpt2/Pm6Mv7w5mrK61u455wJTAmQngj75vlQpOi53YoXFhbzzw/X43IrHrlkSsD9T7Bv33Eo1iROl5snvtnGfz7dSFJ8LM9eOb09UyaY8Xu6NmtxuLjvs008/vVW8tITeeaK6QFTq2FfhcGK+tYeG1h1LQ7+8cF6XlxYzLC8NB67dAqxnax9ctMTqW91hsR5WV7fwm3vrOGDVaVMLerNvedOCBg5B8hJT2DBttDcezurm/j9m6v4elMlx4/O5/endD73hJpgzuAAYLJSqgFARP4CvA8cASwBuqy0ROQ24Bqgwnzp90qpD8z3bgWuAlzAL5VSH3f1/1tNi8PFnAXF/O/LzVQ2tHHUiFxuPG444wdkBvX3eRmh8za3Ol3MmV/Mg3M3U93YxmkT+vHb44d3atB4MJRJaCbzmqY2Hp23lae/3YbTpThvWgG/PGZYwJQEDzmpoZtYAZbsqObv769jaXENI/LTmX3ldI4c7j81xBvvNI2UrJ5NckopPl1bxn2fbWJtSR0j+6Tz7JXTOSJIWULp0fGkmz02bwt7mxycMr4vt5w4MiivTmZKAjESuj1Yq3fXcucH6/huSxUDs1N45OLJnDCmT6cTMOxbBFQ39NzAUkrxzeZK7vtsE0t27GVQTmqXZMlOTWSlWdimp9S1OPjfl1t46pttKODaIwbz86OGBuVJFRFyQ5g/v2tvE//5dBNvLttFSkIcNxw7jKsPHxywh1AEoHWVSWOrk/s/38RT32wjPSmO/5w3gTMn9g/qmvYsMo2yyv73/QWi1enioS828/CXW8hMSeCRiyd3alx4yE5N6HGp6BaHi4fnbuZ/X20hIymehy6cHHRqa156Uo8rqVU3tvGnt1fz/soSJgzoxT0/mcCwAHuQvclO63mhgcqGVu54by1vL9/DiPx0Hr1kSqd7j8Fw1MTHSo8zFbZXNnLz6ytZsK2aQ4dm848fj28vIBKI3LTQ7EFbV1LHTa8ZhvUJY/K544yx7euuQOSEaPyF26q55fWVbK1s5LypBfz+5FF+ewfuN77XHryBnRijgfA2rK89YjC/PnZ4p8Yd7G/gdTfao5TijaW7uf29tTQ7XPzuhBFce8TgTh07YBz/vU0OHC53UJ/3hcuteO777dz98QYEuOPMsVw0vbBTx7oVBKMt8wDvq80B5CulmkWkJ1fhf5RS93i/ICKjMfqWjAH6AZ+JyHCllPWdVoPA6XLzxrLd3PfpRvbUtnDo0GwePW54p16hjuS1K7DuHz5PdOafH61jZ3Uzs4Zkc8tJI4M28jzkpiWytaJnyqyx1cnT327j0XlbaWh1csaEftxw7PAuTRAZyXEkxMb02HO5s7qJOz9Yx4erS8lLT+Tus8dz9pQBnXpuvGlfwDe29Sik/OWGcv718QbW7KljYHYK9/5kAmdO6t8lWXLSE1i4vWfHpNXpYvZ32/nfl4ZhdeTwXG44dlinG069iTX3RvTUGC+ra+Guj9bz5rLdZCbHc9tpo7lwRlGnUStv2vfr9TDauWBrFXd/vIElO/bSr1cSfztzLOdNK+jSxJ5lppO63arbE7jT5ebFRTv5z6cbqW5s48yJ/fjtCSMC7rnyRU4IotFVDa08OHczc+YXg8BVhw3iZ0cNDdiDK4LQugr4amMFN7+2ktK6Fs6bWsDNJ43s0vnzLES7q59W767lN6+sYENZPWdN7s+fTx1Npp8m2b7I7uE+lO+3VPH7N1exrbKRH0/qz59OHd2175/eM6fJZ2vLuOWNldQ2O/jdCSP46RGDievCnGJE8Lp37JVSvLpkF39/fx1NbU5+dcwwrj96aNDzq4jQOyWh2ymCLrfime+286+P1xMfE8M/zxrHedMKgjLsYd86oLsRxP0Ne8OwPnlccM4y2JcK393j39Dq5O6P1vPs9zsY0DuZ56+awWEB9sGHevzqxjb++u6aLhvW7eOn7xu/O2uf3TXN/P6NVXy1sYKpRb3559njuxQJ9Bi41Y1tQTnmO7LJjNgvLa7hyOG53HnWuJBluXSHYAysOcACEXnb/P004AURSQXWhlieM4CXlFKtwDYR2QxMB74P8ThdZuWuGm5+fRXrSuqYUJDJPT+ZwKyhwd843qQmxpGWGNftCNaaPbX85e01LN6xl5F9jOjMEcNygp5EvMkx0yGUUl3+e6UUH68p5S/vrKGsrpXjRufzm+OHM7JP4HQzX4iIWUGmexNLc5uLh+Zu5rGvtxIrwq+PHc41RwzqVopfVto+A6s77Khq5I731vLZunKKTMPqjIn9uqRkPWSnJrLXLF/fnb+fu6Gc299dy7bKRo4wDavO8qADydLdFMFWp4snvt7GQ3M343Qprj1iMNcfPZSMbqSb9XQjeEltM3d+sJ53V+yhT0YSd5w5lnOnDghY3ckfOWmJOM1Gzb27YYTM31rFbe+sYX1pPTMHZ/GHk0czLkC1wEDkpiV2u3+b2614bv4O/vXxBpranPxkSgE3HDes0z1oEcYPWle1Ol3c9eEGnvp2G8Pz03joolkBq2D6w+PF7qp+crkVD83dzAOfbyIrNYGnLp/Kj0YG3u/qc/xu7kNxutz8+9ONPPzlFoqyU3juqukcPiy4TAFv8tKNPWBdnXMbW5387f21vLhwJ6P7ZvD81TO6pQtz0hK71VuvtsnBTa+v4OM1ZUwfmMWdZ41laIA2Lf7ISu3evt/S2hb+78WlLNq+lx+NzOPOH4/rcopp+zqgGwb2looGrp+zlPWl9fx4kmHYd3VO7p2SQGw3q1iu2FnD9S8sZXdNM5fPGsjvThjR5TS/9ghSN3TbvI0V/Prl5dS1OLjh2GH8/KjgDWsPPSky8vby3fzhzdW4leK200Zz6SEDu+x09N4D1xUDSylDf/3tvXWkJsZ2KWJvJZ2efaXUHSLyETDLfOk6pdRi8/lFPRj7FyJyKbAY+I1Sai/QH5jv9Zld5msHICLXAtcCFBZ2vteouzhcbu75ZAOPz9tKTlpilz0i/sjrhrfZ4XLz8Nwt/PeLTWSmxPOPs8Zx7tSCLkVEOpKblkib0019q7NLi92qhlZufWMVn6wtY1TfDB6+aHKXI3kdyelmasTynTXc+PJytlY2cubEftxy0qge7R3YN8l1TRalFM8vKObv768lRoRbThrJlYcO6vIk502OueG8urEtqBQHD/UtDv767lpeW7KLwTmpPHPFtIAVC4OTpXsG8IbSem54eTnrSuo4fnQ+fzxldFDpIv7l6H4E661lu/nTW6tpdbn55THD+NmRQ4JKnfAri5fHsSvKvMXh4p8frueZ77bTPzOZ/100mRPH9mxeyU1PYPnOmi7/3daKBn776gqWFtdw+LAc/nLa6G4tzMLND1lXVTW08tPnlrB4x14uO6SIW08e1e09FAlxMeSkJXTJwKptcvCrl5fx5YYKzpjYj7+ePqZLUStvcrqxD6WivpWfPW98/wumF/DnU8d0+77OzUjq8py7s7qJa55dzIayeq47cgg3Hje82/N+TnoiS3bs7dLfrN5dy0+fW0JZXQt/OHkUVx02qNsRdaPIU9fm1u+3VPF/Ly6lqc3FPT+ZwNmTu7+47c464MNVJfzutZUkxMV027CH7lWxVMrYa/bXd9aSm57Iqz89hKkDu7cWykpNQKRrfdDcbsWDczfzn882MjwvnTnXdM+wh+6lSLY53dz5wTqe+W47U4t685/zJnY78yc3vesRvMZWJze/vpL3Vpbwo5F53H3O+PbvEW6Cmr2UUotEZAeQBCAihUqp4kB/IyKfAb5KlvwB+B9wB0ZDyDuAe4EruyA3SqnHgMcApk6dGvqmBRgemetfWMoSc9K+5aRRIassk5eRaOa4By/Lz+YsYVlxTY8VmDeekHBFfWvQBtai7dX83wvLqG5q49aTRnLVYYO6FV3pSFcjWEopHvlqK/d8soH89EReuHpGt6OK3nRno21ts4PfvLKcz9aVc/iwHO4+Z3xIvP+55gK+oqE1aGW/alctP39hCbv3NvN/PxrK//1oWI+MvH2yJLK0uKZLf/P8/B3c/t5a0hPjePzSqRzXSQXHYEhNiCU5PrZL56epzcnv31jFW8v3MKWoN/8+d0LQ+xQD4W2MB7vHYktFA9c9t4RN5Q1ccehAbj5xZEiqIeaa/cFcbhW00+X9lSXc/PpK4mIlYrx+PeGHqKu2VTZy2VMLKatr6dJeo0DkZwS/D2nX3iYufmIBu2ua+fuPx3LRjJ5VmfR2WgSTZr6looHLn15IRX0r958/kTMm+rRzg8Y7hT+YOXfJjmqufXYJDpeb2VcEv7/WHzlpiVR3IWvhyw3l/HzOUjKT43n1ukO6lPrti6zURFburQn6868v2cVNr6+kKDuFl66d2WPnTE5aQpfSUx/9agv/+HA9kwozeejCyfTrYUpYVww8t1tx5wfreOKbbRw5PJf7zpvYrUwGD3GxMfROCX4d1OZ087vXVvD28j38eFJ//v7jsT0qzOUpNhasgdfY6uS655fw9aZKrjpsELecNLLbe6eg6xG0qoZWrnxmEat213LTiSO47oghYdlr5Y9gyrSfjqFU+gHlQCGwHiP33C9mP5JOEZHHgffMX3cDBV5vDzBfs521e+q49KmFNLU5+e8FkzrtX9BV8tKTgvY2L9lRzXXPL6Wp1cmDF07qtJdBV2i/oOtbGZLbea7siwuL+eNbqynoncybP5/FmH7dS2fyJ8v6kvqgPtvicHHL6yt5a/keThnflzt/PC5kxm9SfCzpScH3n9pe2chVsxdRXN3En04dzRWzuh4a90dXJ5wPVpVw4yvLyU5N5NXrDulxVLGjLMEeE4fLze3vruW5+Ts4cngu9547IWReJRHpUvXL0toWrn52EWv21PHrY4dz/dFDQuIQAO9NycGdn682VvCLF5aSGBfT7RSmQLK4Tc+7x0ngD7dbcdfH63n0q60hW5iEmx+irtpe2cj5j32Pw6V46dqZPV5ce+iTkURJEAZWaW0LFz6+gJqmNl64ZibTuum59yY3PXgv+urdtVz85ALiYoSXrz2kS/tN/JHXhSIf322u5KrZi+nTK4knL5vK4CB0aGfkpiUYEbSmNvLSAxt476zYw69fXs6I/HSevmJat/atdMSTXRPMtoEnv9nGHe+t5dCh2Txy8ZSQVBjNSUtkbUldp59TSvGPD9fz2LytnDq+L/eeO6Fbad4Hjh/cXmOHy83Nr63kjWW7uXzWQP586uiQ6P1g9+A1tTn52fNL+WpjBb87YQQ/P2pIj51jiXGxZCTFBTV+dWMbVzyziNW7a7n7nPGcO7Wg07/pjK5E0HbtbeKSJxeyp6aZxy6ZyrEhcN6GmmBM3TuAmcBnSqlJInI0cHFPBhWRvkqpEvPXHwOrzefvYOTM/xtDSQ4DFvZkrO6wcFs1V81eRFpiHG9dfyjDg/RMd4V8M4LV2SQ2b2MFVz+7mH69kphz9YyQy5Ib5AJRKcV/Pt3IA19s5qgRufz3gkkhL9ecY/Y/6eyYNLU5ueyphSza2PGu5QABAABJREFUvjdkE0tHgi3Vu3JXDZc+ZVyiz181o9Ny2l3F2wDuDI+ym1yYyWOXTg15mDzYHh1tTjfXPb+EL9aX89MjBnPTiSN7lMbqi9z0xKC8nJvLG7joifk0tDh54tKpHDMqtJNwV87PW8t2c+MryxnRJ4PHL53S5SIWneFdASqQgeVwubnptZW8uWw3F80o5C+njQlJhDMC+EHpql17m7jg8fk4XIoXr5nJiD6h0w15GZ07ACvqW7nwiflUN7bx/NUzmBgC4wb2v44DUVzVxOVPLyIlPpaXrj2kR2nH3rQX+eikF9a8jRVc8+xiBman8vzVMzp1agSLd4pkIAPr600V3PjycqYU9ebJy6aGTB/nZyTS1ObqdNvAU6a+OXFMH+6/YGJIjBsw9ExVQ+eFg+75ZAOPzdvKJTOLuO30MSHTMcEU/lJKccvrq3hj2W5+c9xwfvGjoSFbgxgRtMDrMYfLzc+eX8rXmyq46+xxnDctdKnHOUE0G25sNdZgG8vqeeTiKSHJTAGjPkFyfGyn+rS6sY1LnlxIVUMrL1wzI6SO5FASjIHlUEpViUiMiMQopeaKyH09HPduEZmIkXaxHfgpgFJqjYi8grEh2Qlcb3dVpqXFe7nsqYX0zUziuatmWFaBJC89iRZH4L1PHuNqaG4ac66e0aPQsz/2Teb+vZVKKe54bx1PfbuNc6cO4M4fjwtZBGB/WRJwuIyCAf7SH1scLq55djFLduy1JLLoIZiS1xtK67n0qYWkJcbx/FUzelRW1R85QXpzX1hQ3K7s7jt/Ysgb8EJwPTqcLje/emkZX6wv529njuVii5rS5gZRvn5ntZG65HLDaz+bxai+3ctLD0RmcnxQm6I/Wl3Kb15dwYxB2Txx2dSQNZH0pj21NYAs3sbvb48fzvVHh25hEAH8YHRVfYuDq55ZTGOrk5d/ekhIjSswIlhVjW20Ol0+F857G9u45MkFlNS08OxV00NmXMG+fSiBogiVDa1c+tQCHC53SI0r2JeiGMiBs6x4L9c+t5jBpm4OZZXNYKLiq3fXct1zSxial8YTITSugPYoWHldi9+1yQerSrjj/bWcMCafBy+cFNL1QDCFg56fv4OH5m7hgukF3H7GmJDOYYaBEdjR++9PN/L60l3ccOww/u+YYSEbG4zvv2JXjd/3lVLcalbqC7Vx5Rk/kA5xuNxc/8JS1uyp5XErnJad7PVubnNx5TOL2FPTzJyrI9e4guAMrBoRSQPmAXNEpBzoUV1vpdQlAd77O/D3nvz/7rKprJ4rn1lEXkYiL107s9PwfE/IyzDTEPxMYl9vMrxjQyw0rsComhMjgSfzBz7fzFPfbuPyWQP5y2mjLVuQeUfTfBlYDpeb6+cs5dvNVdz7kwmWGVceWdbs8Z+msK2ykYufXEBiXAwvXD0zpArem9SEWBLjYgJOOG8t280f3lrV3kjUqmhEZz063G7FTa+t5MPVpfzp1NGWGVdgnJ/526r8vl9W18JFTyyg2eHi5Z/O7Pam386IiRGyUxMCGuNfbijn/15cyoQBvSwzrmB/z7cvXG7Fja8st9z4DSM/CF3lcit+9dJyNlc0MPuK6ZY4DvqaRYLKalsPmNtqmx1c+tRCtlY28vTl00KSFuhNXGwMWQH2oTS2OrnqmUWU1LbwwjUzQl6QJTEulsyUeL/3kZESvpi89CSeu2p6yFsYdBYV31HVyOVPLyQzJYHZV07vViXWQHgMrNLaVp/HdtH2am54eTmTC3tz//mhNa6g88JBn6wp5c9vr+aYkXncccbYkK9HctISaHW6aWh1+jRc5yzYwX+/2Mz50wr4VYiNK2P8xIARnP98upHXluziV8cMC7lxBYbzcl2p77WPUoo/vLmKLzdU8I+zxoXcuAKjWrG/9ajT5eb/XlzGil01/O+iKd0uJmIXwdwZZwBNwK+Bj4AtwKlWChUO9pr5pPGxMTx35QxLjSugfb/DzuoDyyp/s6mSq2cvZlBOqqXGFRj9jQI1Nnz6223857ONnDNlAH8+1TrjCvZFSMp9VK9yuRW/fnk5n68v544zx3L2lAGWyQFmClqdkcLZkT01zWZkRPH8VTMsM66g8/1GH68xIiMzB2Xzv4unWJrqta9884GyKKX409ureWPZbn57/HCuOmyQZXKAcX5qmhy0OA4MGlQ3tnHxEwuoamhl9pXTLTOuPORlJFLm5/zM31rFT59bwrC8dJ6+YrplxhUE3ruilOLPb6/mvZUl3HrSyIPRuIIfiK56dN4Wvlhfzm2nje5Sj52uMMTsXbOhbP89sQ2tTq54eiHrS+t49OIpHBqCokK+yE1PpMzHHjCHy83P5yxl1e5aHryw55Vr/ZGX7rsIVWVDK5c9vRClFLOvnG5JtTLPfVzmb/ynFuJ0G+OHYs9VRzz/01cVyc3l9Vw9ezEDMpN54tKp1mRKBCgytbR4L798aRnjBmTy3xBHzjwEclR9traMP721mqNH5PK3M0Nv3IERwWlsc9HU5jzgvRcWFPPAF5s5b2oBNxwbeuMOzD1ofvTZfZ9t4pXFu/jlj4ZywXRrKqLm+rn3jDXGGj5bV8ZfTx/DiWN91SWKLIK5Ov+slHIrpZxKqdlKqQeAm60WzE5cbsWvXl5OeV0rj10yxdIFs4eRZkrHmj37NzT8ZlMlV81exKCcVF64ZqYtDT7zM3z3z3l9yS7++q6RBvDPs8ZZXp1lUK4RFdlSub/T2e1W3GKW4fz9ySO5xIbFYVFWCo1trgPSRCrqW7n4iQXUNTt49srpQVeO6wkDs1PZWnmgI/7rTRX83wvLGNe/F49fZo2y20+OHOO+2NohNc+z2XjOgmJ+dtQQrj96qKVyABSZ9+j2qv2PS12Lg0ufWkBxdRNPXj4tpKlL/hiUk3bAMQGjfcBVzyyiIMvoyROqIiz+SE2MIyUh1ufekXs+2dB+fn565BBL5QgjB72uWrGzhn9/spFTxve11Ege2ScdEVjnVWyguc3F1bMXsWJXLf+9YBJHj+xZ24dADMlNY7OPeebm11fy1cYK7vzxuJDt+/BFXnrSAXN/i8PF1bMXU1rbwpOXT2OQBSnhAGmJceSlJ7K5fP/v74nclda18ORl07rUwLUr9O2VRIwYkTJvyutauOypRcTHCrOvnG6Z49dT3bXjOmBrRQNXPbOI/AyjoEhPquUFHt+j5/Yff1nxXn7x4lLG9u/FgxdOtsS4AyjKSvU5/ufryvjjW6s4akQuf/uxNcYdQGF2KvUtzgOMrJcWFnP/55v4yZQB/Pq44ZaMDTA4J5XtlU04Xe79Xn/wi828uLCYnx81hEsPGWjZ+KEkmCvkOB+vnRRqQcLJ/Z9vYt7GCv5y+uiQVWHqjPSkeAZmp+y3kfjrTRW2G1cAI/IzWFdSt1+05pM1pdz0+koOG5rDAxdY4ynqSJ+MJNIS49js5TVVSnH7e2t51QyJX3uEPYvD4aYBvNFLlpomc99BbQtPXzGNsf1DV0ExEMPy09hU1oDbve/8LNpebaSQ5qUx+4rppFkYGfGQkhDHgN7JbOyg+B/4fDOPzdvKZYcUcdMJI2zZ0+Mp9rKhdN/5aWpzcuXTi9hQWs8jl0xhZogLjvhjWF4au/Y27+dxXLunjkufXEB2WiJzrp5Btk19OQZmp7KpfP+ow2Pztpj7FQq56YQRtsgRJg5qXdXY6uSGl5eTl57InWeOs/Q+S02MY3heOt9tqQQM4+qaZxezYFs1/z53AieO7Xkp+EAMy0+juLqJ5rZ9Eeq7P97AG0t3c+NxwznfIu+5h7yMRPZ4OR3dbsVvXlnBil013H/+pG43aw+W4fnp+xlY+0XuLpjcrQbSwZIUH8vg3DTWelX0bWh1csUzi9jb1MZTl0/rdp+jYOjXK4n0xDg2es3tFfVG5DBGhNlXWBM59NCuW7x0/zYzLTQ/I4mnLp9maSaCZz/leq/vv3xnDb94YRlj+vXioQsn96gUemeM9LH2+WJ9GX94azVHDs/lzrOsnXuG56fT5nKzo3pfs+1XFu/k3k83ctak/vwuinSY37MkIj8TkVXACBFZ6fXYBqy0T0TrmTEoi6sPG8SFFk/aHTlyeC7zNlWyt7GN91bu4apn9qUF2mVcAYzrn0FlQxt7zJQMo5S0ERl59JIpIasO1Bkiwog+6e1Gp1KKf35kNGO9+rBBloXEfeFJK1thylLX4uCypxextaKRxy+damvu76g+GTQ7XGwyFe7ynTVc+fQi+mUmG5GRFGsjI96M7JPBip017cb4o19taU8h/ctpod1sHIjBuakkxMawcpcRAW5xuLj22SUsLd7L/edP4ugeNlXuCh6F5JFlU1k9lz61gNTEOOZcPcOSNB5/TCjIZMXOmnZj/IUFxdz5wXpOGd/XspSWcPND0VVxscKxo/L493kTbbnnTxzbhwXbqnlr2W4uemI+322p5F/nTOhxn6lgGNuvF0oZKWFgzDP/+3ILF80o5P9+ZH2EfGJBJmV1rRRXNbXrofdXGem1dqQmje6XwfqSehpanbjcit++uqI9cmdHOeox/TJYscuYR1qdLq59djHrS+t56MLJjB+QaenYIsKovhks22mc+9pmB5c9tZDKesO4s6KYlDfpSfEUZqWwzLz2SmtbuOTJBQCWG3cAA7NTSI6PbR9/U1k9Vzy9kJz0BMuNO6B9T6dn/MXbq/n5nKWM6pvOwxdZa9yBce0D7c22P15Tyq1vrOLwYTn88+zxUaXDAp2pF4APgX8At3i9Xq+UqrZUKps5dGiOZbnkgbhgRiFzFhRz9L1fUtPkYFJhJk9fPi0kDYS7wmFmL543l+6iKDuV3766gqFmZMTqm7kjR4/I5Z5PNrKprJ45C4p55rvtXDyzkD+cMsrWGysrNYEJBZm8t7KEMyf15/o5S1lbUsfDF02xbN+DP44cYZyft5fvZtaQHH72/BJ6pyYw5+oZtncsP3pkLp+tK2NpcQ3zNlZw/+ebOG1CP+46e7ytDf4S42KZNTSbj1aXcvXhg7jx5RXM31bFPedM4ORx1nrXOzJraA4JsTG8s2IPCXExXPvsYkSE56+eYamn1xeHDs3mxYXFfLmxnG2VTfzt/bX8aGQe/zl3YshL5UcQPwhdlRgXyx9OGW3beJfPGsjLi3Zyw8vLSUuM48ELJ9t2bx06NIek+Bie/nYb322p5KG5Wzh1fF9ut6CogS8OM9cDT327zdhv9f0OLp5ZyDWHD7Z8bIAfjczjsXlbefqbbWwsb+DdFXu46cQRlkfuvMd/e/ke5iws5pM1pXy3pYp/nzvB0rRQb44Zlcc/PlzPOyv28MTXW9lUXs8Tl00LSZ+zYMefs6CYj1aXctdH66lpcvDiNTMtN+7AKPJy9MhcPlxdyuHDcvjT22uIi43h+atC1wogEFmpCUwuzOSNpbspyErhj2+upl+vZJ6xaT04sk86/TOTeXnRTpwuxW3vrGFc/16W7zG3AvG1iR9ARAK66CNJcU2dOlUtXrw43GJ0i0/WlPL60l1MLcrislkDw3YBXfH0QuZuqABgcmEmj1861ba0Jm/K6lo45t6vaGg10q2uPHQQfzrVXuPKw1vLdnPDy8sBSEmI5f7zJ1ma9x+In89ZwgerSgEYmpfGs1dOD0tj2NpmB8fc+2V7lZ+zJw/grrOtKdvfGXM3lHPF04sASIiN4Z9nj+OsydYWP/HHH95cxZwFxQAM6J3M7CunB9W4O9S0Ol0c+++v2ovnHD86nwcumGT5/jwrEJElSqmpQXxO6yqLqGlqY8mOvUwq7G1rVgXA/Z9t4j+fbQTgnCkD+MdZ4yz3nnvzyxeX8c6KPQBcddgg/nDyKNucSG634vzH57NwWzUimP0erY/ceWhxuDj1v9+wubyB+Fjh7z8eF5JGssGyt7GNE+6bR3l9K6mm7rWzkWxxVRMn3T+PxjYX2akJPHbpFFvLga/YWcPZ//sOp1tRkJXMk5dNs6Qfqz8+X1fGVbONeWpkn3SeunyareuNFxYU8/s3VwFGhtmjl0yxPfDQFfzpqkAG1jaM3h8AHWcVpZSyx5UTBNGmtCKR+hYHLy4sJjMlgTMn9g+rp2D17lreX1XCrCHZHG5G18KBUop3VuxhS0UjZ0/u3775Nhw0tDp59vvtJMfHct60Ass2+AbD5vJ63li6m0mFvTl2VF5YQ/afrCll5a5azpjYz5aCI/5ocbh4fv4O3Epx3rRCywtaBGJndRMvL9rJ8D7pnDqur62RxVDSBQNL66qDEKUUi7bvJTk+lnED7Nnv6o3D5ebzdeX0z0wOy/hNbU4+X1fOyD7pYZnbapscfLWpgkkFmbZH4sEoqvH91ioOGZzd3vzZToqrmli+q4Yjh+XamobvYWNZPZvKGjh6ZG5Y9P2KnTWU1bVw1Ii8sKwH52+totnh4ohhuRGffdFlAyua0EpLo9FoDi6CNbCiCa2rNBqN5uDCn64KyiwWkdOBI8xfv1RKvRdK4TQajUaj6SlaV2k0Go0mEug07ici/wR+Baw1H78SkTutFkyj0Wg0mmDRukqj0Wg0kUIwEayTgYlKKTeAiMwGlgG/t1IwjUaj0Wi6gNZVGo1Go4kIgt05lwl4KjHZv9uzE5YsWVIpIjt6+G9ygMpQyGMD0SJrtMgJ0SNrtMgJ0SNrtMgJ0SNrKOQs6sbfZKJ1VaQQLXJC9MgaLXJC9MgaLXJC9MgaLXKChboqGAPrH8AyEZmLUaHpCPbvNRJ2lFI9LjUnIoujZUN1tMgaLXJC9MgaLXJC9MgaLXJC9MgaJjm1roogokVOiB5Zo0VOiB5Zo0VOiB5Zo0VOsFZWvwaWiDwEvKCUelFEvgSmmW/drJQqtUIYjUaj0Wi6gtZVGo1Go4k0AkWwNgL3iEhf4BXgRaXUMnvE0mg0Go0mKLSu0mg0Gk1E4beKoFLqfqXUIcCRQBXwlIisF5G/iMhw2yS0j8fCLUAXiBZZo0VOiB5Zo0VOiB5Zo0VOiB5ZbZNT66qIJVrkhOiRNVrkhOiRNVrkhOiRNVrkBAtl7VKjYRGZBDwFjFdKxVollEaj0Wg03UXrKo1Go9GEk2D6YMWJyGkiMgf4ENgAnGW5ZBqNRqPRBInWVRqNRqOJFPxGsETkOOACjN4iC4GXgLeVUo32iafRaDQajX+0rtJoNBpNpBEognUr8B0wSil1ulLqhYNVYYnIiSKyQUQ2i0jElPUVkQIRmSsia0VkjYj8ynz9NhHZLSLLzcfJ4ZYVQES2i8gqU6bF5mtZIvKpiGwyf/YOs4wjvI7bchGpE5EbIuWYishTIlIuIqu9XvN5DMXgAfO6XSkik8Ms57/MvS8rReRNEck0Xx8oIs1ex/YRu+QMIKvf8y0it5rHdIOInBBmOV/2knG7iCw3Xw/bMQ0wL4XrOv1B6KpI1VMQXboqGvSUKVPE6qpo0VMBZI04XRUteiqArFpXdUQp9YN+ALHAFmAwkACsAEaHWy5Ttr7AZPN5Oka1rNHAbcBvwy2fD3m3AzkdXrsbuMV8fgtwV7jl7HDuSzGaxEXEMcXo3TMZWN3ZMcTw2H+I0fNnJrAgzHIeD8SZz+/yknOg9+ci5Jj6PN/m/bUCSAQGmXNDbLjk7PD+vcCfw31MA8xLEXedHiyPSNZTnVwTETGvdpA1qvSU1/mPGF0VLXoqgKwRp6uiRU/5k7XD+1pXKdX5HqwfANOBzUqprUqpNoz0kjPCLBMASqkSpdRS83k9sA7oH16puswZwGzz+WzgzPCJcgDHAFuUUjvCLYgHpdQ8oLrDy/6O4RnAs8pgPpApRqnqsMiplPpEKeU0f50PDLBDls7wc0z9cQbwklKqVSm1DdiMMUdYTiA5RUSAc4EX7ZAlEAHmpYi7Tg8iIlZPwUGhqyJZT0GE6apo0VMQPboqWvQUaF0VLNrAMg72Tq/fdxGBikFEBgKTgAXmS78wQ5hPRUI6g4kCPhGRJSJyrflavlKqxHxeCuSHRzSfnM/+k0AkHlPwfwwj+dq9EsMT5GGQiCwTka9E5PBwCdUBX+c7Uo/p4UCZUmqT12thP6Yd5qVovE6jhag5hlGgq6JNT0F06Kpovf8jXVdFk54Crava0QZWFCAiacDrwA1KqTrgf8AQYCJQghGOjQQOU0pNBk4CrheRI7zfVEYMNvi+ABYiIgnA6cCr5kuRekz3I5KOoT9E5A+AE5hjvlQCFCqlJgE3Ai+ISEa45DOJivPtxQXsv8AK+zH1MS+1Ew3XqSb0RImuiho9BdGpqyLtGPojCnRVxJ9rH2hdZaINLNgNFHj9PsB8LSIQkXiMC2OOUuoNAKVUmVLKpZRyA49jY2g4EEqp3ebPcuBNDLnKPCFW82d5+CTcj5OApUqpMojcY2ri7xhG3LUrIpcDpwIXmRMXZhpDlfl8CUa+eFgbwAY435F4TOMwyo2/7Hkt3MfU17xEFF2nUUjEH8No0VVRpqcgenRVVN3/0aCroklPgdZVHdEGFiwChonIINNTdD7wTphlAtpzWZ8E1iml/u31undO6I+B1R3/1m5EJFVE0j3PMTaRrsY4lpeZH7sMeDs8Eh7Afl6WSDymXvg7hu8Al5qVb2YCtV5hb9sRkROBm4DTlVJNXq/nikis+XwwMAzYGh4p22Xyd77fAc4XkUQRGYQh60K75evAscB6pdQuzwvhPKb+5iWi5DqNUiJWT0H06Koo1FMQPboqau7/aNFVUaanQOuq/VFhqOwRaQ+MyiEbMSzrP4RbHi+5DsMIXa4ElpuPk4HngFXm6+8AfSNA1sEYVW1WAGs8xxHIBj4HNgGfAVkRIGsqUAX08notIo4phiItARwY+b9X+TuGGJVuHjKv21XA1DDLuRkjf9lzrT5ifvZs85pYDiwFTouAY+r3fAN/MI/pBuCkcMppvv4McF2Hz4btmAaYlyLuOj2YHkSonurkmoiIedVLzqjRU6ZcEamr/MypEXn/+5E14nSVHzkjTk/5k9V8/Rm0rmp/+G00rNFoNBqNRqPRaDSarqFTBDUajUaj0Wg0Go0mRGgDS6PRaDQajUaj0WhChDawNBqNRqPRaDQajSZEaANLo9FoNBqNRqPRaEKENrA0Go1Go9FoNBqNJkRoA0uj6SIiki0iy81HqYjsNp83iMjDFo15g4hcaj6/XUSOtWIcH+OeKiK32zGWRqPRaEKD1lMaTXjRZdo1mh4gIrcBDUqpeywcIw6jf8RkpZTTqnH8jC3m2Icqr4aMGo1Go4kOtJ7SaOxHR7A0mhAhIkeJyHvm89tEZLaIfC0iO0TkLBG5W0RWichHIhJvfm6KiHwlIktE5OMOnds9/AhY6lFaIvKMiJxjPt8uIn8VkaXm/x7pQ67LReQtEfnU/PwvRORGEVkmIvNFJMv83C9FZK2IrBSRlwCU4YH5EjjVgkOm0Wg0GhvRekqjsQdtYGk01jEEQ+mcDjwPzFVKjQOagVNM5fVf4Byl1BTgKeDvPv7PocCSAONUKqUmA/8DfuvnM2OBs4Bp5hhNSqlJwPfApeZnbgEmKaXGA9d5/e1i4PBOvqtGo9Foog+tpzQaC4gLtwAazUHMh0oph4isAmKBj8zXVwEDgREYCuVTI8OBWKDEx//pC6wLMM4b5s8lGMrJF3OVUvVAvYjUAu96yTLefL4SmCMibwFvef1tOdAvwPgajUajiU60ntJoLEAbWBqNdbQCKKXcIuJQ+zY8ujHuPQHWKKUO6eT/NANJnY0DuPB/T7d6PXd7/e6RBeAU4AjgNOAPIjLOTPdIMmXQaDQazcGF1lMajQXoFEGNJnxsAHJF5BAAEYkXkTE+PrcOGGqlICISAxQopeYCNwO9gDTz7eHAaivH12g0Gk1EovWURtMNtIGl0YQJpVQbcA5wl4isAJYDs3x89EMMj52VxALPm2kiy4AHlFI15ntHA+9bPL5Go9FoIgytpzSa7qHLtGs0UYCIvAncpJTaZPO4+cALSqlj7BxXo9FoNNGF1lMazT60gaXRRAEiMgLIV0rNs3ncaYBDKbXcznE1Go1GE11oPaXR7EMbWBqNRqPRaDQajUYTIvQeLI1Go9FoNBqNRqMJEdrA0mg0Go1Go9FoNJoQoQ0sjUaj0Wg0Go1GowkR2sDSaDQajUaj0Wg0mhChDSyNRqPRaDQajUajCRHawNJoNBqNRqPRaDSaEKENLI1Go9FoNBqNRqMJEdrA0mg0Go1Go9FoNJoQoQ0sjUaj0Wg0Go1GowkR2sDSHHSIyIciclmYZRgoIkpE4sIph0aj0WgiE62rNJqDF21gaaICEdkuIscG81ml1ElKqdk9HO82EXm+J/8jiDEuFJHFItIgIiWmsj3MyjGDRUQuF5FvLB5jmIi0BDrOYnCXiFSZj7tERKyUS6PRaLqL1lX2EkG66jYRcZjHyPMYbKVcmshGG1gaTRgQkRuB+4A7gXygEHgYOKMb/+sAz2OUeCMfAhZ18plrgTOBCcB44DTgp9aKpdFoNBrQusokGF0F8LJSKs3rsdVqwTSRizawNFGHx2MlIveIyF4R2SYiJ3m9/6WIXO31+5Uiss787MciUuT13hgR+VREqkWkTER+LyInAr8HzjO9UCvMz/YSkSdND95uEfmbiMSa78Wa8lSKyFbglADy9wJuB65XSr2hlGpUSjmUUu8qpX5nfuYZEfmb198cJSK7vH7fLiI3i8hKoFFEhpppHleJSDHwRRDfXYnIdSKySURqROQhM2I0CngEOMT8/jXdO1P+EZHzgRrg804+ehlwr1Jql1JqN3AvcHmo5dFoNJpQo3XVD0pXaTT7oQ0sTbQyA9gA5AB3A0+KHJg6JiJnYCigs4Bc4GvgRfO9dOAz4COgHzAU+Fwp9RGGt87jjZpg/rtnAKf5uUnA8YBHOV4DnGq+PhU4J4DshwBJwJvd+N7eXIChHDNNuQCOBEYBJwT67l6cCkzDiA6dC5yglFoHXAd8b37/TF+Di8jDprLz9VjpT2gRycBQ2jcG8R3HACu8fl9hvqbRaDTRgNZVPwxdBXCaaQCvEZGfBfk3moMUbWBpopUdSqnHlVIuYDbQFyN9oSPXAf9QSq1TSjkxlNFE0zt2KlCqlLpXKdWilKpXSi3wNZiI5AMnAzeYXrxy4D/A+eZHzgXuU0rtVEpVA/8IIHs2UGnK0xMeMMdr9nrtNlO+ZgJ/dw//VErVKKWKgbnAxGAHV0r9XCmV6ecxPsCf3gE8qZTaFeAzHtKAWq/fa4E0XwsUjUajiUC0rvph6KpXMAzGXAwj9s8ickGwMmoOPqIh91Wj8UWp54lSqslcb6f5+FwRcL+I3Ov1mgD9gQJgS5DjFQHxQInX2j4G2Gk+7+f1HGBHgP9VBeSISFwPFdfOTl4L9N098pV6vdeE72MYMkRkIvD/7J13eBzF+fg/c3c69S65W+4Fm2obDCEESEiBEEgjIYFQQgmpv4T08k1Ir6SHhFBC770kQCAQunvv3ZYsq/d2bX5/7K50Ou2eTroZFTKf59FjSzr7nd2dnbfOO2dhRU9ToR0oiPu+AGiXUkrFQzMYDAYdGF31P6CrpJRb4759XQjxB6zsYGImzvA/gnGwDG91DgE/lVLenfgLOzp24cB/AkCiAX8I6AHKPBRNNZYSdKhIMqY37P/rg8BDHp/pAHLivp+UwhgTf+Z57SkwqAMjhPgbcLHHrw9IKd1K+c4AZgIH4wwNvxBikZRyicvnt2A1uFhpf3+c/TODwWB4K2F01fjWVW7jMpUW/8OYEkHDW52/Ad8WQiyG3s2/F9i/ewqYLIT4shAiUwiRL4RYbv+uBpgphPABSCmrgeeA64UQBUIInxBijhDidPvzDwBfEkJME0IUA9/yGpCUsgX4PvAXIcQHhRA5QogMIcTZQohf2R9bD5wjhCgRQkwCvqz42gejBpgmhAgmuY5rEjomxX957ZP6OzAHq7zjeHuMTwPv9fj8HcC1QoipQogpwFex9hcYDAbDWwmjq8axrhJCnC+EKLabb5wEfAl4PMVrMLwFMQ6W4S2NlPJR4JfAfUKIVmAzcLb9uzbg3Vitv48Au4Az7X/6oP1ngxBirf33S4AgsBVoworoTbZ/dxPwLFYThrXAI4OM63qsjbPfA+qwInhfAB6zP3Kn/X/tx1KW9w/x0pNeewr8BytTdEQIUT9U2UnG1CmlPOJ8YZUAdksp6wCEEKcJIdrj/smNwJPAJnv8T9s/MxgMhrcMRleNe111IbAbaMMKDP5SpnnGmWF8I8xWBsNbDSHEy8DNUso7RnssBoPBYDC4YXSVwfDWZdA9WEKICcCpWBsju7AiC6ullDHNYzMYhowQIgeYDewb7bEYDIaRw+gqw3jC6CqD4a2NZwZLCHEmVm1uCbAOqMU6D2E+Vl3qQ1gHgLaOzFANhuTYBtZurJKyi02nOYPhrY/RVYbxhtFVBsNbn2QO1q+BP9lnDiT+LoB1LoNfSvmw3iEaDAaDweCO0VUGg8FgGGskc7Am2Rv7DAaDwWAYkxhdZTAYDIaxRrIuguuFEM8LIa4QQhSN1IAMBoPBYBgCRlcZDAaDYUyRLIPlxzrF+kLgHOBNrBOpH5dSdo3YCFOgrKxMzpw5c7SHYTAYDAZFrFmzpl5KWT7Y54yuMhgMBsNo4aWrUmrTbh/gdjaWAjsTeEFKeVG6gxJC7Mc6MyAKRKSUy4QQJVjnKMzEOlfhY1LKpmT/z7Jly+Tq1avTHY7BYDAYxghCiDVSymVD/DdGVxkMBoNhxPDSVSkdNCylDGEdWLcNaAWOUji2M6WUx8cN7ltYSnEe8AJJThk3GAwGg8HB6CqDwWAwjAWSOlhCiOlCiK/bp4M/ZX/+PCnlEo1jOh9wTr++HfigRllKqG7p4rontvDkhsOMVLfV7nCU7z22iT++sIuOnsiIyATYXdvGV+5fz30rDxKLjVxn2f/urOPa+9fz3511IyYT4LbX9vHtRzaxrXrkOjxLKfnp01v52T+3UdvaPWJymztDfP3BDfzlxd10haIjJnf7kVa+cv96Hlh9aETn1Avbarj2gfW8PMJz6tZX9/HdRzex40jbiMmUUvKjJ7fy839uo66tZ8TkjhRGVyWnpSvMT57ayv2rRmbdfnlnHd95dBMbK5u1ywJ4ZVcdX3twA6/trh8ReZurWrj2gfU8MUI6v6a1m2sfWM8db+wnOgLPrzsc5f8e28yfRsi+kFJy/XM7+Pm/Rm59uvmVvXz/8c3sr+8YEXlPbjjMNx/ayLqDSZPcylixt4GvPrCBF7fXjoi8/fUdfO3BDTy0pnJE3onGjhBfe3ADN7+yl3B0bB516HnQsBDidWAq8ABwlZRyjQb5EnhOCCGBG6WUfwcmSimr7d8fASZ6jO9q4GqAiooKDUNLnYfXVHLb6/u57fX91LR2c+Vps7XLfGNPA3e9aXUl/u/OOu6/+mQC/pQSkmnx3NYaHl1XxaPrqthZ0873P7BIu0yA+1cd5J+bjvDIuip+//Hj+eAJU0dE7l//u4ea1h4eWVvJI597G4unFGqX2dQZ5qZXrLMnn95YzdNfejtFOUHtctcdaubBNZUAvL6nnjs/vRyfT2iX+69NR3rn1J66dr59tsqkgzf3rjzI89tqeWRtFX/6xAl84LgpIyL3hpd2U98e4pG1VTz6+bexcFKBdpl17T3c+po1p/65uZqnvngahdkZ2uWOBEZXDc4bexq4+VXr+e+p6+A75+h9x377752sP9TMQ6sruffqk1k6o1irvD/9Zzcr9zXy0JpK/nbxUt539CSt8p7ccJhH1lbxyNoqDjd3cc3pc7TKe2xdVa+8LVWt/PKjx2qVt3p/E3e+eQCAV3fXc+9VJ2vVBZVNXfzpP7sBeGbzEZ764tvJz9K7Pv3xhV20dkd4bF0VT33xNCpKc7TKu/65Hexv6OThtdY7ceLMEq3yHlxTycNrra/rLziOjyydplXew2sreWiN9XWwoYNr37NAq7x/bqrmIdteWXewmT9/8gSE0G+vDIVkFvm3gJlSyq9rUlgAb7cjjGcDnxdCvCP+l/bhe66usJTy71LKZVLKZeXlg+6D1kpnKIoQ8K6FE/jdv3fS0hXWLrO125LxhTPnsuZAE4+tP6xdJkAoYkUKPnFSBf94fR+7a9tHSK5kTnkuS2cU85Ont9EdHpkMSzgqed/iSeRnBfjp09tGSKZ1jy9YOo3qli7+9t+9IyLXebafXF7Ba7sbeGbLyHS+DkVjBHyCjy+bzs2v7BuxiGJPJMaiyQUcN72Inzy9lZ7IyMypnkiMc46ZRHbQz8/+uX1EZIaj1jJ6wdJpVDZ1cfMrIzOnRgijqwbBmdsnzSzh1lf3UdWst/dHdzjKiTOLKc0L8qOntmqVBdDRE+G0eWUcPbWAHz65hYjmiHYoGiM36Oe9iyfy++d3as+6tPdEEAI+c/ps7l99iE2VLVrlOfPlk8srWLGvkSc36rUvHHkXn1zBgYZObrYDjDoJRyXvXTyRSEzy6+d2aJfX0hXm/OOnMKkwix8+uUV7licUiTG1KJsTZxbzs39u016VEorEyAz4+PAJU7nhpT0cauzUKq/dzqx+/sw5PL2pmjf2NmiVNxw8HSwp5ctSSimEmCWE+K0Q4hEhxBPOlwrhUsoq+89a4FHgJKBGCDEZwP5zZPKbaRCKxMgK+PnCO+fSEYry3AgYpr0G07JpzJuQx70rB5yxqUmuZQx/7T3zCfgED64+NCJyQ9EYeVkZfOWs+dS39/D8tpqRkRuJMaUom0+/fRav72ngYIPeRcORCXDSrBLeu3gS9686qN1ggD7H7tJTZjK9JHvk5lQkRjDg46vvmQ/QG5XSLjcaIy8rwJfPmkdNaw8vbh+ZUsFwNMa04hwue9tMXt5Zx2HNxi70zam3zS3lXQsncu/KkS3H1InRVYPTE7ae/7XvmU8kJnlas8EcjsaYkJ/F1e+YzYZDzdrLYSNRSW4wwP9713yqW7p5aYfedzkcjZGV4efr711AdzjGExt0309Jht/H58+cS07Qzz2a12ZHF1y0vIKZpTnct1Kvng9FrLXo7XPLOGNBOfevOqS9FDIcjTF3Qh6fOKmCZzZX09KpNzAeiUpKcoNcc/ocNle1srlK77aDcDRGTtDPV949n4aOkHabKRS19PjX3ruAqJQ8srZKqzzHJrrm9DkU52Rwr+Y5OhxSqSl7DKtD0p+A6+O+0kIIkSuEyHf+DrwH2Aw8AVxqf+xS4PF0ZekmbE+s46cXMakgi5dGYE+HswAGAz7OPXYKaw820dCuv3Y5FImR4fdRmpfJKXPKeHaEshzhSIygX3DKnFJKc4P8e+sIOVjRGBkBwQeOtcrHntuq/3pDCc+2qTPMmgP667YdIzwrw8c5x0zmjT0NI5KNdd6fCQVZLJ9VMnKZs0iMoN/H2+eWUZSTMSKBEbCMpaDf11uSOBLvkLNeZPh9fOC4ydS397B+hPbHjCCPYXSVKz32859dnsvCSfm8sE2vLxiJSTL8gnPtdfPfmtfNcDRGRsDH6fPLyQ36+c8OvdcXjlgOz9wJ+Rw1uYBnN4/A9fkEBVkZnLGgnP9sr9GaAQnZAdzMgLVOvblPry6IxPrWp/OPn8KR1m62HtbngMRi0p6jPs49djLhqOQ/O/Q7IBl+H2cfPQmfgH9rdngcvbp8VilleZna9Wo4aunTKUXZnDijRLtec+ZoXmaAdy+ayH931I5IIHoopOJgdUsp/yilfFFK+V/nS4HsicCrQogNwErgaSnlM8AvgHcLIXZhnW3yCwWytOJ47kIITpxVwtoRMIadiRTw+Th9QTlSwpt7G7XLtSJpVp3r6fPL2d/QSc0INGJw7rHfJzhtXhlv7GnQnmKXUhKOxsj0+5heksPsslxW7BuJe2w7WH4fp80vQ4iRerZ9Su70eeVEYpK1I7Ah11E8AO+YX87u2vYRCRY4cznD7+PUOWUj8myjMUnUVuyzynKZVpzNyhGQ6zjPQb9lhAK8OQZLKtLE6CoPeuyS6syAn5Nnl7KxskWrMRK2A3Hl+ZksnJSv/d0KxywHJBjwcercMl7dpbfZhRN4A3jHvDLWH2rWWrYesR1IgDPmT6CmtYddGsvzw5E+XXDq3DKkROs6Fa97Tp1TBlj7gHURH8Q8bloRBVkB7etwJCYJ+ASleZkcO62IN/foXX9DdtbTsZlW7G3UajM5QQewKiW2HWnVmhWM2NVUQghOnz+B1u4IG6v0ls4OlVQcrD8IIX4ghDhFCLHE+UpXsJRyr5TyOPtrsZTyp/bPG6SU75JSzpNSniWl1G99pEmPHQkHWFpRRHVLN9Utest+HO896PexaHIBQb9vRDo2WY6OH4AlFUUAI+JQhuOM8BMqiqlt6+Fwi17HLhKTSEmv3CUzill7oGlEaqfBkluQlcG8CXmsOzRyGaxgwMdx04vwCVg3Ipkz2ff+2Jvh1x5s1i7XifABnFBRRFVzl/ZgQa8hYRtnS2cUs3ok5lScQVGUE2R2WS7rRuAejzBGV3ngPP/MgI/jphfSFY6yu06fgR6Kyt6mS8tnlbDmQJPWkq9IVBKwA39LZhRzsLGTpo6QNnnxQaElM4oJRWNsOazPuAtFJQGfI68IgA2HmrXJi88oHT+9iKDfx6r9Oh0sa24E/IIJBVnMLstltUbdEx/E9PkES2YUa60SkbIvsAaWvtlUpTfIEYpEe/XqkhnF1Lf3UNmkzy4NR2O97+DyWaVICWsO6pszkbj76bwTGzW+E8MhFQfrGOAqrOicU3LxG52DGm84m/sAjppsdQTTXXMeb6gFAz4WTSlg/QhMrpBdqgeweEohQb9vBOX2LU6A9nanffe4T25DR0jrIhUvt9f4n17M+kPNI2CEW/9/ht9HbmaABZMKWDcCzzbe0TlmaiF+n2D9CDmU8UYSoH0uh+IUO8CSimLq2no4otmxi89gARxfUfRWdLCMrvIg/vkfM7UIQOsekEgsTk9MLaQzFOWgxk3v8QG4Y6dZnV51RrPDcfpoSYWzduiTF4nGeitHZpflkZcZYKPGRhfxuiArw8/8SXlajyoJJ6yLi6cWai0RDMddH1g6dmdNu7aW9H3yrGd4/PQiusJRdtTosxPDURlnQxQBevVbKNr3Thw91bKDdT7DUKTPoZtUkEV5fqbWd2I4pOJgXQDMllKeLqU80/56p+6BjSdCkT4Dcf7EfADt3fXiSwTBMky3VrdqN8LjjeFgwMfs8lx2alwkHELR/vfYJ2Cnbic20pclBFg4yXq2up3nnrgMFsBRk/Np7gxr71TlGGG9wYJJ+eyq0d8l0nJ0rIUyK8PPzNIcdo6E3Lg5tcB+b/XPqf7O8wJ7Tum+3kSnfdHkAurbe0akFHMEMbrKgx77HfP5BDNKcwj4BHs0ZrDCccGLo+xjCPQa6H3R7GOmWg7WZp0OVtzaUZ6fSWlukF1ajeW+++nzCRZNKdCaMQsnBGQWTioYEQcrXudVNXdp2/eVKM9Zh3WVXToZwUCvA2LN0W3VuueMpVfnTczD7xNabbVI3DuYn5XB9JJstmnUp5FY3zshhOCYqYVs0ejQDYdUHKzNQJHmcYxr4g214twgZXlB7U5HKCEiMndCHm3dEeo0G0zxUX+wnB2dteDxcp3FPivDz4zSXK0lLtCXbXAyWHMn6F2EHZxolzOn5k0cKbn9lc68ifkcae3W3ugi3ngAe06NhNMeN6dyMwNMLcpmp+Z7HEq4x/NHyLELJTjtcyfkAfoDQSOM0VUexM/1DL+PGaU57NXpYMWVCM6bmIdP6HWwnP0YYBl3kwuz9DqQccYkWNeoNRsR6yuBBJg3IY89dR3aAqqOLnBkHjW5gPr2kLYgX3yJIFgBINA3Z0KegS49z9AJ1jpzdEZJDhl+oXX9jbfVMgN+ZpTmaLVLw3H7EgEWTCzQGoy29nz1fyf21XeMyEHcqZKKg1UEbBdCPKu69e1bhXjlBTBvgn6nwykZcA5Wm1M+MgZTojE8b0IelU1d2k97j48YgnW9urMrfeVc1j0uzM5gUkGWduM/sZxrnm0M65YbjsbwCfDbSmBerxGuO1jQ/9nOm5jPgcZO7WedDXTs8vTf40j/0pSS3CBleZnaAzKJGSzHadcdpBhhijC6ypWeSJTMDH/v97PLLQNdB1JKu1woPiudq1U3haOyNxAGln7QdX3g7MHqM+7mT8xnd027NocnEu1vY8ydkEdLV5gGTfvMBmR4eoN8mhyQhBJBZ33S5ST3BbqsZ1hRkkNmwKdt/Q/H+q+/Ab9P+zsRimuMApY+12mXhhL06cJJ+eyta9d2vmQ4Fuut4AKYMyGPUDRGZZP+o3RSJRUH6wfAh4CfobD17VuJ+BJBgJllOdoPWbPOo4qfXLkAWpUK2A09EoxhGAnHbmDEcF99R+/CrEVmQtTfkbtTs8ORaAyX52dSkBXQn7FLeLa92RXdjuyArGgeUupTrg7xNeqW3Hz21nXo3Xic8GwtuXoVHwwsO51SmEVu0D8iJaAjiNFVHiQGAWeX53KgQc9cdyLI8e/0zLJc9mk8QNzpIugwpzyXPbX6HJ7ENWvexHzaeiJUa2q8FI72z2A5AdU9mtaNxD1DM8tyANhfr8euSXToJhdkkRnwaTt0PtGh8/uEFbTVVSLoZOh8/Z1kvVlWqwOyw/yJ+Rxo6NTn8CQ4WLPLc4lJtO1ZjyTo7953YgwFDQd1sOLb3SpuffuWITECP604h/r2EJ0hfVmd+HbpYG3yyw36tS24fXL7K+o55ZZjt79Br2OXaPzPLc8jEpPaN05Df2N4dlkuB+o79Z5BEukfXRNCMGdCHntqNd/jhAVyWnE2Qb8+JeeQOKdmllpz6oDmQ50TjaTZ5bmEojFtRhLEK/a+d3dmmWXs6iRxf13vnBpDyihdjK7yJhSJkZnRN9dnleYSjkotc73XOI9bN2eU5nCgQc+6GbW7vQbi9dKEPNp7ItRqK2nrv2bN0rxmJRqvc5zqAk3vr7N/x6mQmVKYTTDg07ZOJZYIOnsF9+ly6CIDgwCzynK1Pj+gn5M8d0IeBxo6tDk8bvotGpMcatTj8CTapDN63wl9TnIgIagCaLeThkIqGSzDICRO5IoSK9qjayLDwJI5IQSzyvVGCS25/aMG0+1rPajbGE5QMDNKbbkaHazE/TJgXW9bT4Qmjec7uGU5Zpbmar1WGBjl9vkE00qytctNnFPOs9XpYPWWMbnMZZ1yE/dCgVWP39QZprVb35xK7JoF1jql+9kaxgY9Ce92n45S//yd9Sve+JlVlktXOKplD09i9gOsTnugL5qd6PD06SN9xmRGXPZjckEWWRk+9mqqWEmskPH5BDNKcrTZF4kZJbB0nq7AbeL+aoCK0hwqmzq17OGJxPpnBMF6J3RmeKyy2T55FSWWA6J1jvZ7frqznrJfUKUoJ0hpbnBMBQ2Ng6WAxOxKr9OhObsSvwACzCgZmUh4/CKRleFnUkEWBzReq5RywD2uGAHHLnEvFOiPynjJnV6Sw+GWrt7f6SDRaQfL+NedSYrvdgTWJvWS3KA2RWDJdDpEDoy4jURW1NU40zqXrShp4jtU1dSltSTSMDYYSR3llvl33i0dBnrfOxX/Lut9pxKDQpMLswj4hLa1MpJQIujzCSo0rs2J2QiwnqEuh8etHH9WWS4HG/Q4PK66vSSHcFRyuFm9w5Ns3deW4YnECPr79l1WaA4gJm7jKMkNkp8Z0DZn4o+CcKgo1W+vDAXjYCkglFDrqjM66JC44IITgdFrMCVGKcCOhGuc1E70J/5lKs/PJCvDp9kYHhj1H4nMmauBUpKDlFClYfF3SMzEQl+WQ3dJpJtcnQulm8KbVJBF0O/jgEbHzi072RdZHIm53N8IjcT0lIkZxhY9cWc1Qp9DoGPORVzWTZ0ldH37W/rm9pSibDL8QlvgL3HNCvh9TC3O1ibPXe/mas1GJAbbZpVZa3JMY4YnkFA6HYrGtDo8wfgMj0bd3lsi6HML1uqZMz0JXf3K8oLkBP3a9Exi2awQgplluezXWHYZ8A8MCI+lqoxBHSwhxKlCiH8LIXYKIfYKIfYJIfaOxODGC4nRweKcDHI1TmTof4q1w4wS/QZT4rWCtTBpLdWLDDRKhdAbwQN3R2ckM2f9yrk0R7tgYFTWkptL+wiURA7InGmORLk9W79TEjlqz1Z/uetIl0SOJEZXeZO4bjsOgU5jMn6OTynKIsMv2Kdh/Uo8EB7sd7lYX+DPckASApwaA43uGSV9wS83h25mWS49kZiWQ9HdyvF1BjPdM0r6gwDxz7A0N0hu0K9FnpTS1eHRO0djrnNU5769+KAKWPbK4ZYubfvahkoqGaxbgN8CbwdOBJbZfxpsEg1EIQTTS/R2EozEYr3ttB10R0Sg/2ndDhUlORxp7dbWVtttMbTk5mq9x4mtXMEqiZxYkKm1JNIrgwV6s6KJ+9zi5ep17AbOqRklOVRrLIl0c3RA/76kvtLEPrl5mQFKNZdE9l6vSwR1LEX80sToKg96IlEyA/5+P6vQpKPc1s2A38d0TQ5P2NnfklAyP70kR1s22s0B0WlMRmIuWwJKc+gOx7Q08kgs94K+5kM6Sr7csp7Ti/XpvJGuYEg8aBgsO3FGqZ5tHU7jlwF6tTRHX5Y1MjCjNLM0l8qmLi3dniMe9oqUUKVpX9tQScXBapFS/ktKWSulbHC+tI9sHJHYHACsxV1rBsvFe++t6dW6d8U92wD6jH+3DBboL19LaoRrdWIHlryU52eSGfBpb8DgVtMMmpuJuJUIljobgDXNKRcnFuwSA03dzsDdeQb9tePOuT2+uDk1qSDLLqMaO12X0sToKg8Sj9cAfTrKKyA2ozRHk3E+sEMb9O0f1fEuu61ZM0pyae2O0Nyp/mwq1y0BGjPQoWhs4P3UmGlPPIMRrDJWv09wSIMOcHTsgAqGYj0VDL0l2i42mw6Hx62JB/QFVXSUeYZcnPIZpTlEY1KLwxOJDXwn+mzgsRE0TMXBelEI8WshxClCiCXOl+6BCSHeJ4TYIYTYLYT4lm556eBWNjdDs/HvNrkmFWQRDPi0lzi5ORygL3PmVj4A1svUFY5S166vFS+4OXZ6O/o588lpkQtx6X3NmTM3Jxb0lkS6RUt1L5Rum5zBcux0dol025AP+puJhF2CQH6fYHqx/jP7RpAR11XjRU+5leFWaOpe6ZaNAOxovXqd2Nfie+Aa0tYdoaVL/bvstmbpLPUNx9wyZvoy0G7rxeRC+9gODU6yW/VEwO9jSlEWBzV0Y/Ze//WswxHPOWpV4ahu5OHWhh4s/dYT0ZX1HBignVmmL+tplQi6v4O6u1qnSioO1nKsUov4wxt/o3NQQgg/8BfgbGAR8AkhxCKdModLLCaJxAbuXZlRmqNtIoPtYCVMLp9PML04W+uZVK77dDR3TUw8w2eAXM1nV7il2XWXRCbKdOSOdCZpJEoivfZgARzQ1hbYQwFpLolMPPDXYYbm2vFQNDYgmgl2GdUYUUYKGFFdNZ70VE845rl+qnaw3UoEwWrb3N4ToaFDbYbHKb9KzA7oCvy5HfEA+kvoEitWphZl4xNwUIc8lz3efp9gekk2BzS03Y5EpavO0xUA8sqyOsehqA4COHN04LaOHPs8OrVOZLIKDdCj31xL9jQGHSIue77K8zLJ0bSvbTgM6mBJKc90+Xqn5nGdBOyWUu6VUoaA+4DzNcscFl4TWfcG8kjCIWsOTpRQF25GuNOOU/chhG7RJtDn2PVGgbyMf10ZO5eMKPSV9OgsX3OTq6tOHOJa8LsslLlBv7YORF5lpzM1P1uvrOjMMqt2XN8hkEmcdo0lkSPJKOiqcaWnRsrBcmu5DTCjTM8RF8467ZYdAPVZcLeutqC3ksOtYiUY8DGlSE/nQreGBaDvbKqwS0kiWA6WjjJxr0oCJwhQ3644CODS5AL02RJuB9pDXxBAT5mnHGAr9elxPUGAxHe+r9JnbJS9ezpYQoiL7T+vdfvSPK6pwKG47yvtn8WP72ohxGohxOq6ujrNw/GmxyPVrPu8JLeabNC7L6k3cpcgVwjBjLIc9mk2hhMV9rTibITQ2+bUktv/emeV6TvTBbyV24ySHDpD+koie1ycZ7CUzj5NhwX2HcA4cKHU6dh5Rdmnl+QghMZn67Fe9Ea/Ncn1erYV9sHZzRq7ROpmFHXVoHrKHteo66qe8MAmF7rOwvLKDvfNccXyYu57sPoqHBQ7dB7Zj+ygn8mFWVre4YjLuZegr9tqyKVhAVglX3rKPN3lVZTmUN8eojMUUSrPK8A2Q1NJW2+TiwGNSvQ4PF4205Qi63gG1d08HdvQW4/rCDrEBmStQf8RL0MhWQYr1/4z3+NrVJFS/l1KuUxKuay8vHzUxuFVvuak73Xtb3DrKgSWMdwZiiqPwFgyB24M7ZObq8049MoSZgb8TCnUVxLpaQxrrCsG7wxWr1xtJ6O7ZzlmluVS395Dm+K9Go5McJ9TszSfoeEmNytD75zy2nyss7wILKM3cY2Kl6ujffYIYnTVILiVtBVmZ1CYnaHcwQpFBx5qDZZO9PuE8qBJb3bAN9DhmZCfqT474LG/Baz3Sce75B1Q1bMf2C3jCZZ90RWOUqd460OPy54vsIKoAJWKmyR4BQFmaQp0uZ1DCPo6F3rpt4DfR0VJjvLr6w2Uujg8M8t0NbdxfyecrRQ6GnkMlYDXL6SUN9p//nDkhtNLFTA97vtp9s/GHF7Gv870PbiXDED8xtcOyvMzlcr0ioqAZQz/c1O1p3OgS+7s8lytmSQ3uQVZGZTmBrU6lK7XWpYHWIv/SbNKNMkdOKfiDwk9emqhWplJnu2M0hye3XLEit66/F6FXDelrtexc1e0xblBCrMzNDrtUff3ttx2sOo6WFJRrEW2bkZRV40LPdVXhuuewVTdRKDvnR5Y0ja1KFv5u+XVRRD0dGnrsR1Itz2NM8tyeHZLjVJ54N7kAqzra+wI0dYdJj8rQ5m8UCRGMMe9XBysDP+Egiyl8twcuulxZazzJ6qLlXjpnanFVhBA9TrsNLFI3IOla1+bU1nlGoQvU28zOfIyM9znzL+31hCNyQHXnw7h6MASQejfyGNSobo5OhySlQh+TwjhacUJId4phDhXz7BYBcwTQswSQgSBC4EnNMlKC6fRQVaGf8DvdB6W6rbpFfr2JenIcnhl68CK3MUkmlqqJs9y7Kvr0FIS2ZPsesv01KKDe9t/sBb/DL9gry7HLhIbUEYEfZkzHY5sKMnCPLMsl0hMUtWssYuUh5GkrVTPXi9cM4WlOdqyk577+opz8GksiRwJRlFXjQs9FY5KYhKyXN4xHWdhJVs3dZwVFfYoMwY7w6NYB/eEk+vBxo6Q8s6Fnvpe074vzyoKjSVtXusTqC9j7YlEyfCLAQZ/ht9nNQpTXcbqEawFe4+zpkYzbu/8TA3dPJMFLGfajTwOK9bjVhWX+1YK0Ht2Z6okCwtvAp4UQrxgt779hhDi+0KIO4UQm4APACt0DEpKGQG+ADwLbAMekFJu0SErXRwHy80w1dnO26tEsHdfkga53XaHs0wXZ7KvfE39pO5zYt0drDYNnanAWoT9PuEaJZmh0RjujsRcHXa/z9rAua++XYvcnkjMc0EGPc+2zxhzmVOl+hw7R67bfZ5ZmktLV5gmLXPKitTGt+DvlashsujQHXZ/tsGAj+klOeO9RHBUdNV40VNdSYKA00usJgIq20T3NSVyf7dUZ7DCHhkz0NPxdbDAG6g17qSUdtdgbwdLfZmnu8Pj7OFRHVz0kleWFyQ7w6+8+U+PRzARLIdH/R4spxGLR5a1QW2QuC8IMPAaZ5VZZZ41rerKPPsCpW6JBj1OecSlTbslb+ycheXpYEkpH5dSngpcA2wB/EArcBdwkpTyK1JKbTt2pZT/lFLOl1LOkVL+VJecdOkz1Nyjg076XjVuHVugb1+SjtatySJ3Ohs/JDXCdcp1aW3sMKs0lyOt3XSF1LfVtjake8gty9NmhPeEY64LZHbQz6SCLC1GuNOW3N1YcbKx+pz2pHNZy/V6zymdrdp7IgObHDg4WeDxymjqqvGgp3oGqbIIRyVHWruVyUuWHZ5RmkNLV1jpYbxeDQSgzwFR2Ymub80amaBQNObeJRH0daHzqqII+H1ajnbwkieEdfiv6soYr5JEsEvE69U6PL1lrG4OQYn6ffO9c9SjMgTUztHkGSw9+tSrGdgUe6/nWDgLK5U27buklLdJKX8upfy9lPJZKaWeXsLjkGQZLJ0tnztDEXJcFCbYXVQ0eO/JHJ3inAwKsgKaHB1vY3i2ZsfOaxHW2ejCK4MF1p6z/Q3qN3BKKemOeDt2usrmupM47TpbtafitOvJ2EVdnViwIotWq3Y91+v5bO2I7Xhv1W50lTtOBivbZd7pOEswFHFvcgHxzVxUOjzeDp2Ow3+TlTXrcHg6kzy//KwMSnKDyttSJ9tLPaNUfdOCZPL0lLFGPeXNLM2hQ3G33k47EJsddAlyaMh6Js2yamio1JPknZ+Qn0lWhk/pmZaxmLQrbgbezwy/tddzTGewDKnhZHVcS6s0GuFdoajry2rJzdHivSfLNggh7OYAehwOcI/ATi2y9iXpcbCino7OLJ1GeJIM1szSXEKRGIcVH0wYjkqkdH+2oK/xQ0+S0gKnxauOOZVsLjv7kvQ82+SODqClJX532Hsuzy7PpTMU1XYoumF06Q57r586zsJKtmfWyUqrNCYd4zU308V41bBHKZnxanUhVduqvSuJcQ562lJ77ccFTXt4PEoEwSlj7VJbQpeskkBDt95eB8sti6x1jg6UN6Uom6Dfp3SOJnsnfD7BjBK19oMTNMrxeCes8x1HvyrDOFhpkqy+vddg0lB+0xX2drAqSnJp0FCamKxTDOg75Lg3g+Ui12k7quMeJy/n0lfn6xWZAX2lmMnKXsB6tjrKXZM5OpbcHC37GJMZncGAj6nFeiJgg5UIgp6Ds5PJdebU3nFcJmjwpjeDFRz4/CcXZlnlNArnnGNMZrnMt2nF6s+Zc+TlZAxsilySGyQvM6D0+pIZr2BlzXTcTzcHEtQ30+qtZvDU8+oP4+1OElScVpxNu+Kz+nrCSTJ0GoIOXfb1uXXRm2YH9FTqm54k+9b9PsG0kmw974RXVVWp2sN/e9/5ZEEHk8Ea/zgvfVHOwBapzsGDOmpPw1HpWSKoqy67vcc67C/ZpK5u6e6tN1ZFn8JOElHT8DJ19EQ8HZ38rAyKcjK0lHN1hiKuCyPoe7bJShigr5uT6s3G7d2Dz6nKxi7lJZFdoQhCeDt204vVl6WA9Q7lBN1PxyjOySAvM6BpTkXJ8sp4xx3tYHjr4ex3KswODvhdwC6nUWlstXZFyA36XfcMZWX4mZifpXQd6bT1ktvaJYSwMzzq5razZuVlur/Hqo0755DdbBcHEiyHoLqlq7d0MV26w5Z9UeDR9t3RBSr3tbV2RSjM9pCnoZFHe0/E8/k5QQCV8rpCUU8d13ukj8o52murec9Rpe+8HXjNz/KWd6hRXRayL6vr8U6U5tDcGVbezXOoDOpgCSHm292ZNtvfHyuE+J7+oY0PmmzlVZwzUHmBffCg4mxDm7PAJ5nMoD4S3jzItU4vySYak1S3qNswDdY9zs8MeEacphZnU6WhPXxTZ5iSXPdrBfWLFFjRw6bOsOc9nlhgdXFS3bp8sHk8vcQ68FH1ZuNmewH0lptDKBqjpk31nApTmJ2Bz+NcjunF6s8HAusdcgvGgGUMTtew3yAWkzR3hijxuMeTCrPwCahSfJjnSGN0lTvOu+21lukwtryMZbDWEpXrSHsoQtDvS7pnSKXD09zlrJXu11hRkkNdW4+yBkiDOnT2ESmqHB7HKPV6htNK1B/+29odHtShUzlnmrtCFHmsh8GAjymF2UrX4bbuMLkezw/UZyGbO8MI4f0MK0qsbSSqHJ7WQebM9OJsusLqGnm09Vjy8jyyuhUldtBwlBtdpJLBugn4NhAGkFJuxDrvwwA0tIfIzvB7Zjpm2h1pVFJvb74sy3M/SFhXlqOpYxBjWNOZFc2dYYqTODpTirJp7Y4oL19r6gx5XiugxRjuCkcJRWKei7/fJ5hclKXcGG60W5IX53ovyKC+AYPjtHs5HTo24QM0JnE4wDIC69vVGUkOgzvtarMJYAVkYhLPdyjD72NiQRZVzWqd2FHA6CoXGtqTO1iq17HmzjAFyRys4hwqFcqra+uhPN9dF4JVnlTZ2KWsFb1TteJ1jb2H4ypyCJxmC17XqLpc3XGwCrK9MzygzsEKRWJ0hqJJ7qcd3FMY8GruDFM0SBBA5Tpc3x5KOket7RXq7MTmzhAFWRmeB/tWlOTQ1hNRluFx3glPh65U8TvRlto7oeuYpFRJxcHKkVKuTPhZRMdgxiMHGjp6jUA3Zpfl0tSpti1tbWtyBys/K4NSDZ2Fatt6CPjE4IpF8aSubeumNM/bKJ1aZC3AhxUaiFJK6lp7ksqtKMmhqlmd4gZ6z6YoG+R6VWewnAXLa04VZmeQr6F8raa1h8yAL2m5DahfKAd7tqqNJLAySXVtPZTmJjEG7WyCyg3dtXb2L9mcmlKUTVXz6Nesp4nRVS7sre+gyO7y6kZFSQ4NHaHesqJ0qWruYoq9JrsxrSSH6tZuZSVtta09TChIYryW5FpZcEWt6KtbuijICngGVVUHhRx972lMKpbnHAg7uTDL9fd5mQGKczKUZcwGk5eflUFxToaytTgak9S29lCeZM6oLvOsbev21K1gPcOmzrCyIHF1S3dSh0512eXhli6Cft+gwXdV9oPTkGlCvvuc6T2Ae5TL3lNxsOqFEHMACSCE+ChQrXVU4wQpJduPtDF3Qp7nZ3ScObCrtg2AOeW5np+ZWpytPCK9p66dmWW5nlGRSfYCqfJMFYDdte29G/HdcJS5SgOxrq2Htp5Ibxt4NyYVZBGOyt4SHBXsqbUOEZ5d7j2nphblKM9g7anrwCfwDBYIYWXOVD/bvXXtzC7Pcz14F6ySSEB5h7s9de3MLvO+x5MLrTl1RGG5a3VrN13hKLOTvLcTC7LoicRo7VLnF+yps+ZUsndIh9M+Chhd5cK26lbmJnnHVGanozHJwUGCjlOLspASZQ7Pnrr2XgPODdUVHfvqO5iVZH129KCqNWtPXTv5WQHPksTy/EyyM/zKjGXHVpme7BkWq1svnD3qyeaMyixrVVMXoWhsUN3e0N6jJHgajsbYX9+ZdN13AgR1iubMvvqOpOv9JFuvqjpseH99B9NKsge1DVW+80G78sKN3MwAZXmZ46JE8PPAjcBCIUQV8GXgszoHNV7YVdtOVXMXJ88p9fzMtGLLUFO5L2nNgSbK8zOTRijK8jJpUHiOQywmWXewiUWTCzw/k+H3UZST0VuSooLKpk5qWnuSyp2oeHEC6x4DLJpS6PkZJyJVr/A+rz7QRMAnmD/RW4FPKMikoaNHaZZj3cEm5k7I84zKApTmZirtHBWNSdYdak76bLODfnKDfqX3+EBDBw0dIRZN8ZbrZHsaOnTMKW+5zjtdr1Du2oPNBP2+pIGgiQWZSt+fUcLoqgTq2nrYcKiZtyXRUSqzxFsOt9ARinJCRZHnZ5x1s6Ej/bXkcHMX1S3dHDvNe53uC9Kkr4NDkRjrDzZzdJJ32MlQq1qz1hxo4ugphZ4OshCCiQWZyhy61QcamVKYRXmSjItlX6jRBWv2N+H3CRZP9X6G04tzlJUkrtrfCMDiZLo9P5OY7CudT4fNVS2EorHk8nptifTlNXaE2F3XztGDXJ8lL/05E4tJ1hxo4tgkzy8vM0BmwKfMflh7oIkFk/I9910CSt+J4ZLKQcN7pZRnAeXAQinl26WU+7WPbIwjpeQPz+8iM+Dj7KMneX7OMZhqFXnutW3dvLCtlncvmui54AKU5gaVOjov7aylvj3Eu46akPRzZXmZSo3hh9dUAfCuoyZ6fqZPoam73ofWVFKck8GSJIaCU2Km6j6HIjGe3HCY5bNLyPfY8AvWsw1HJa3darIchxo7eWNPA+9c6H2PwVqUVTrtL2yrobkzzFmDzal8tY7dg6srAThzgbfcUkfhtamdU2V5QY6bVuQt15nLihRDdzjKE+sPc8qcUs+OUmBdb3c41tuxbDxidNVA/vSfXUjggydM9fyMygzWfasOEfT7ePvcMs/P9BqTCub4A6sPAXBWUv2gbp1+ZssROkLRpHowGPBRmJ2hRA9urmph+5E2zlqUfG0uyQ3SqCAo09Dewwvbajlj4YRB7As1uiAcjfHouipOmlniWSYOVmONyqbOtDNKUkoeXHOIyYVZSQN7KoOnD66pJMMvOH1e+aDyVAS5HllbiZQknaN970T68v67s4769hDvTPIOCiEs21DB9e2pa2f1gaak7zxYOk1FECcdvGe0jRDi2oTvAVqANVLK9XqGNbYJRWL87J/beHpTNV999/yktbUlOUECPqHkVPBQJMbXHtxIOBrjyrfPSvpZa3JZWY5kC2Uq1LZ283+PbaGiJIdzjpmcXK5Cx27dwSZueGk37108MWm6OzvoJyfoVxJtArh/1UFe2F7L19+7wLXVsIPKRTgWk/z4qa1UNXfx8w8fk/Szzmb1xo5Q0m5dqdAVivLVBzcQ8Asue9vMpJ8tzQ0qc3SqW7r4wRNbmF2Wy7sHMR5ULcwAq/c38veX9/L+Yyf3brx1oyArQNDvU5ZJunvFAV7eWcd3zlnoWUYBUJZvPVsV9zkWk/zwya0cae3mtx8/LulnS+KM0JySQdVCUsLRGJ09UQo9Spp0YXRVf+588wB3vHGAy942M2nJcaG9PyvdDNaL22u5d+VBLl4+ozdA4YYTmEp33XxjTwN/++8e3rt4Ym8pvhuF2dZm/3T1Q01rNz95aisLJuZzxvzBAo3BtK+vtrWbax9YT0lukI8unZb0syW5mWnviYrGJN96ZBMxKfn0qTOTfrYsL0h9Rygt+0JKya+e2U5Vcxc/+dDRST87vTiHcFRS09qddH/fYNy78hBv7m3k++cu8uwgC+p0++Prq7hv5UEuWj4j6XpYriijtKeund8/v4tT55ZydJKMUlaGn/zMQNp6prEjxPef2ExFSQ7vW+ydaIC+OZOuvC/ft57cYIBPLq9I+tnS3CB77fL40SIVTbrM/nrS/v5cYCNwjRDiQSnlr3QNbixyuLmLz9+zlnUHm7n81Jl87sy5ST/v81mee22ata7VLV18/u61rD3YzC8+fExShQnWZA5HpXW+RBqGzsp9jXz+nrW0d0e4/zMnk5HE4QAr27CtunXY8hweWHWI7z2+mQn5mfzsQ8kdDnAieOm9vJFojF89u4O/v7yXU+eWcvU7Zif9fLmitH5LV5ivPrCB57fVcNVps3jHfO9IF/RlVxrae5I6noOxr76Dz961hh01bfz+48f31kl7UZ6fSXtPhO5wNGkp4WC8vqeeL927js5QlJsuWZbUiQVrLqd7CK6UkntXHuK6J7YwuSiLn5yfXKELISjNC6adwQpHY/zyX9u5+dV9vGN+OZ8+dZDASK5TPpXeetHcGeIr96/nxR11fPaMObxtjndGwZLrlESGku69GIyq5i6+dO86sjJ83HXF8rSDO0PE6Cqsuf7rZ3dww0t7eOfCCXz7nIWD/pt0D8d9cPUhvvXIJhZNLuCbZyeXp6JE8JnNR/jSfeuoKMnhx4O8yz6foDgnmNY7dbChk4tvWUF7T4TbLj8pqXEO1hqdztpxoKGDi29ZQUN7iJsuWTZoIK0sL8iGyuZhywtFYnzlgfX8e2sN/3fuIuZOyE/6+ZLcIKFIjI5QNGnmyQspJb96dgc3vbKPi0+uSFpNANaeL7DsoOE6WP94bR8/emorp80r49JBgollCoIAt7++nx88sYWTZ5cM+k4U5wTxifTkbTncwqW3riQY8PHLjxw76OfL8jPTCvzXtnZz0c0rqG3t4Z6rTk5argfWe5/OVpnDzV186pYVHGrq4oZPLkm6RQYsnaYq6D5cUnkzpgFLpJTtAEKIHwBPA+8A1gBDVlpCiOuAq4A6+0ffkVL+0/7dt4ErgCjwJSnls0P9/3Xxyq46/t996+kJR/nzJ0/g3GOnpPTvyvPTqwV9ZVcdX75vPd1DkNsbgenoGZaDJaXkllf38fN/baeiJIc7rziJhZO8U+q9cnODaWUbusNRrntiC/etOsTb55bxhwuPTxoNdbCyK2ksFm3dfPGedazY18inTp7B9849alBnsiA7QIZfpCV36+FWPnv3GqqaurjuA4sGXfihvzE8XJ7bcoSvPrABv19w2+UncfogTl283Pr2nt5WvUNBSsmNL+/lV89sZ1ZZLvdedTLzJiZX5GAZKyv3NQ5ZnkN3OMr3HtvMQ2sqecf8cv7w8eOTtv13KLOzwMOltrWbL9yzjpX7G7n0lBl89/2LBnUmS3KDCJFe+dTmqhauuWsNNa3d/PiDR3PxIJE+Ry6QVpnRv7fW8LUHNxCJxvj5R44daecKjK6iJxLlWw9v4tF1VXzipOn8+PyjB51zAFMKs4fVBEJKyZ/+s5vf/nsnp80r44aLlgxqcGdl+MnLDAy7HOq+lQf5zqObOG56EbdeemJK73I6lRUbDjVzxe2ricRi3HPVyUn3UDqU5w0/0Lj1cCuX3LqyV97x04sG/TdOgDEWk4M6f4m0dIa55q41vLG3ge+ecxRXDFIdA/2DfEN1sHoiUb798CYeWVfFRcsr+NF5yR1k6Atm1g3DaY3FJL98Zjs3vryX9y6eyB8uPCFpFQHE7VEahjwpJX94YRe/f34X7140kT994oRBA5J+n6Akd/j7YF/dVc9n71pDflaAO65YnpJ+Lssbvq22/UgrV9y2mqbOELddfhJLZxSnIC+TzYdbhiVvd207l9yygrbuCHd8+iROnu29p9ShJC9IZyhKVyjqegj5SJDKmzEBiH8KYWCilLJLCJFOmPV3UsrfxP9ACLEI69ySxcAU4HkhxHwppdrDaIaIlJIbXtrDb57bwbwJefz14qXMGSSDFM+E/OF57pFojN8/v4u/vLSbueWW3GQb1ePpLcNo6xnSWME6BfybD23k6U3VvHfxRH59wXGehwAmUpaXSWt3hJ5IlMzA0CZ1VXMX19y5hk1VLXz+zDlc++4Fgy6EDqV5mcPuULPmQBOfu3sNLV1hfvfx4/jQCcnLMRyEEFbjh2EuUo+uq+RbD2+iKCeD+z9zMktnlKT070rS2FMQjUmuf86Kbh87rZAbLlqSsrMUvxF3qA5WW3eYrz24gWe31HDOMZP41UePS1kxl+dl0twVJhyNDer0JnKosZNr7lrDlsOtfOld8/h/75o3hDk1fKd91f5GPne3lfn9w4XHc/7x3ntg4vH7BCU5QeqGaQw+uPoQ331sM6W5QR74zCmcUDG44oO4rMIw5EaiMX797A5ufHkvi6cU8OdPLkkrs5oG/9O6qqUzzGfuWs2bexv56rvn84V3zk3ZyZ1UmMWKIQYxItEY//f4Fu5deZAPL5nKLz587KBRbIfhltDd8NJufvXMDk6fX85fL16SdF9hPKV5wWEFpJ7ZfIQv37+OsrxMbrt8+aCZHYfhXt/KfY1ccfsq8jID3Hf1KSnLK83LJBqTtHaHPc9QdONAQweX37aKysYufvux4/jwktR0X1+ZZ4gZpam/600dIT5z5xpW7h/aHB1uCV1PJMo3HtrI4+sP86mTZ3DdeYtTWv/zMwMEA74hy4vFJD96aiu3vb6fjy6dxi8+fExKAQ4Y/py5b+VBvvfYZuZOyOPWy05MOcNXlpfJzpq2Ict7cUctX7xnHbmZfh74zClJSxHjKc2zghxDDQJsrGzmsn+swifg3qtPTlleWVw1yLTg8Ksy0iGV1eluYIUQ4nH7+w8A9wghcoGtisdzPnCflLIH2CeE2A2cBLyhWE7KdIYiXHv/Bp7ZcoTzjpvCLz5yTMqLusOEgkw2VA7Nc2/qCHHNXWtYsa+Rjy2bxg/PO3pIXnjfgjQ0pbKnrp3P3LmGvXXtfOvshXzmHbOHFIl2Ij8N7aEhpfJf213PF+9dRzgS46ZLlg26LyeRktzgkCOGUkruXnGQHz65hSlF2dx2+UkclWTjqxtl+UNfFMPRGD99ehu3vb6f5bNK+HMK6e54Soa5QbW5M8QX713HK7vqufDE6Vx33uIhlfr1RfWGJnd3bTtX37maAw2dfPeco7jytFlDnlPS7ujk1ZbVjZd31vGl+9YRi0luvWzZoE08EinPy2R79dAUkJSS21/fz0+e3sb0khzuumI5CyalZiT1ys0feqOYUCTGj57awl1vHuTUuaX88cITUsr8OpQMMyva2BHii/eu5bXdDVy0vIL/O3dRWuWjafI/q6uaOkJ84qY32VvXwe8/fnzSphZuTCzIoqUrnHK0tzsc5Yv3ruPfW2v43Blz+Pp7FwztnR5iMyQpJb98Zgd/++8ezj9+Cr+54LghBVtKcoNsOTw0/XD3igN877HNHD+9iJsuWZZ0r3Ui5flWoHEo5dQv76zj6jtXM6UomzuvWN57vmMq9FUXhFJ2sLZVt3LxzSuIScldVy7npFmpBfigz3gdyjOsae3mEze9SWVT15CCTtC3Pg0lw9PWHebqO6zM3Dfet4DPnj4n5TkqhKA8b2gldNGY5JsPb+ShNZVc8fZZfPeco4bkSJTnZw45sPaH53fxu+d3cvr8cv78yROSNsdKpCwvk9f3NAxJ3mPrqrj2gfUsnFTALZct6z3OJBXK8zOJxCTNXWHPQ88TWbW/kcv/sYqinAzuvGL5kAJ38YHo4VTcqGBQT0FK+WMhxDPA2+wfXSOlXG3//aI0ZH9BCHEJsBr4qpSyCZgKvBn3mUr7ZwMQQlwNXA1QUTF4CcxwaOkK8+nbVrHuYBPfe7+VOh9O2cuE/CwaOnoIRWIpRfgONHRw+T9WUdnUxfUXHMdHBtng6kZfV5rUszrrDjZx+W2r8AnBnVcs59QknaAGk1vf3pOyg/Xoukq+9uBGZpflcuOnlg66v8wNJzqS6qZbKSU//9d2/v7yXs5cUM7vP37CsEopLUMh9UWxKxTls3ev4aUddVz59ll88+yFQ87KOBtUh2IMH27u4uJbVlDZaDXR+MRJQ39nhlOXvuaAtUBm+K09OackaRftRXlen3JN1cF6YPUhvvXwRuZPzOdvFy9NugneizLb0Uk14haLSX789Fb+8dp+zjpqAtd/7PhhNSEpyxtaqUhHT4Rr7lrDK7vq+czps/n6e5I3Z3EjJ+gnK8M3JKe9sqmTi29eweGWbn710WP52LLpQ5Kpmv9VXdXSGebiW1awt76Dmy9dNugeTjcmx51hOJgRE4rEuOqO1by6u54fnrc4pbLmRMrzM9lVm9oGdCkl1z2xhdvfOMBFyyv48flHD7kMbqiNcu58Yz//9/gW3rVwAn+5aMmQgwbx+8xScZSe31rD5+5ey5wJedx5xUlDcubi5dW396RU5bK5qoWLb1lBdoafu69cPmSdO9SMUnVLF5+8aQW1rd3cdcXQnDmwjoApGcI2gI6eCJf/YxXrDzUPqSolHiujlJqODUdjfOX+9Ty1sZovn2VVSgzVVizPy0x5r7GUkt89v4s/vrBryJmyXnn5mbR0hVOuNnpoTSVff2gDJ88q5eZLl5E7xNLQ+DmaioP12u56rrh9FVOKsrn7yuVDcuZAbSv64ZLSHZJSrhJCHACyAIQQFVLKg8n+jRDiecCtrch3gb8CP8Y6EPLHwPXAp4cwbqSUfwf+DrBs2TJ1BwLZNHeG+ORNK9hV28ZfPrmEswfpnpeMyYXWwYq1bd2DetJ769r52I1vEIlJ7r5qOSfOHNpC5FCcE8TvEykvEK/squMzd66hLC+Tu65YnrTDWjKGaoTf9to+rntyK6fMLuXvlywdUgQmnvK8TELRWEpNPaIxyXce2cT9qw9xySkzuO4Di4essB3K8jLZcSS1LEdLV5grblvF2oNNw3ZyHMqHcG7R3rp2Lr7Zql++84qTWJ5C/bIbQ+2s9NKOWq65aw2TCrK484rlw26eMFS5N7+yl588vY3T5pXxt4uXDlkRxMuNxCQtXeFB93lEojG+8fBGHllbxWVvmzlol6rkcoPsb0hN0TZ3hrj8tlVsONSclpMjhLAzZ6mtF7tr27j45pV0hiLce9XylMtbdfO/pqtCkRhX3bmaXTXt3HjJ0mE5V9B38Gh1S1dSB0tKybcf2cQru+r59UeP5YJhzrfy/NSj539/eS+3v3GAq06bxXfOOWpYQc7y/EzaeiIpZegeWH2I/3t8C2cdNZG/XHTCkEvdoX8r+sEcrI2VzXz+nrUcNTmfOz69fFiBPsfhSUUn7Ku3GmjkBgPce9XJw9L1pXmpZ5RaOsN88qYV1LX1cMcVy1Par+NGqiV0XaEoV9y+inWHmvnTJ04YtPOxt7zUt3b85KmtPLWxmm+dvZBrTp8zPHl204lUgsQ3vLSHP76wi48vm87PP3zMsHRNfFn4YMHwf22q5usPbeDUOWXcdMmyYe1pin8n5g+y93pnTRtX37GamaW53HnF8iFV+DgM5Z3QRSpt2s/DUipTgFqgAtiOVXvuiX0eyaAIIW4CnrK/rQLiV+xp9s9GlO5wlCtvX83u2nZuumQZZwzS4WYwJhf1HTaczMGqae3mU7esREp46Jq3pbzfyg1r02Qwpcm1sbKZq+zJfMcVJzEhP/UyrET6XqLBDbWH1lRy3ZNbec+iifwxhY2gyeg9b6yte1AF9aMnt3D/6kN86V3z+MpZQ480JcqtT2FRdKK+Gyqb+fMnlwx70e+Vm2KWw+n0E4rEhlS/7EZWhp/8rNRau6492MTVd65hbnket3/6pGEtkA5DOYTxvpUH+cnT2zjnmEn87uPHD8s46pPbFyxI5mBJKfnBE1t4ZG0V1757Pl8cwt4XN1KdU93hKJ++bRVbqlq54aKlvC/JeXwpyc3LTOkw1sPNXXziphVICfd/5pQhl9Xq4n9NV0kp+b/HNrNyXyN/uPD4QTuxJcPpIDrYPtbfP7+Lh9dW8pWz5g/buQLrnU4lev7ijlp+8cx23n/M5GE7V9Df2ErmUKw50MR3H93U27Aj1T1liaQaPa9t6+4NbN562YnD7vg7IUVjsr0nwtV3rEYA91w1/ECqk1EaTF40JvnifeuobOrknqtOHrZzBall9qWUfOPhjazY18jvP358Wnq2PD+TjVWDb+24f9XB3gDAcJ0rsPRNKBKjrSeSdM/781tr+PWzOzj/+CnDdq4ceTB4tdH2I6189cENHD+9iJsvXTZsO633HRzknWjuDHHVHavJyQxw2+XDtx2c6xvNw4ZTWT1+DJwM7JRSzgLOon9pxJARQsTP+g8Bm+2/PwFcKITIFELMAuYBK9ORNVRiMcmX7l3HmoNN/P7C49N2rgCm2MrrcLP3SeQtnWEuuWUlzXZXlnScK4fyFOrcq5q7uOL21ZTlZXLnFcvTcq4g9Zdoxd4Gvv3IRk6dWzqsEoxEnHEPtgDf/vr+3sXw2nfPT7vTWVleJuGoleXwwon6rtzXyG8uOC5t5wqceu3k19oVinLlHatp6QpzxxUnpeVc9cpNoS79UGMnV9+xmkkFWdx15fCiT/1kpmisvLa7nu89tpl3zC/njxcOL/LcT25eanP51tf2c/eKg3zm9Nl8aRilIYmU2Yf+doS8+yVIKfnGQxtZe7CZ3338+LSdK7C7nQ5ynER7T4RP37aK7lCUe65aPmacK5v/KV1114qD3L/6EF9859wh7Wdxw3GwkkXsH1x9iD+8sIsLlk7jS+9KfjzJYDjvdLKmKnvq2vnSves4alIBv74gva6UE+ICcF7UtHbz2bvWMLkwmz994oRhO1eQWiVHTyTKZ+9aS1NniL9fsnRIeyYTKcrJIMMvkhqTsZjk2vvXs6eunT9/csmQmlO4kUqQ79fP7uDlnXX86Pyjh12N0ysvhQz7La/u48kNh/naexak/U6U5WX2dmb0Ys2BRr732GZOm1fGN983+HEIyejVc0nu6Z66dr5y/3qOnlrALz9y7LCdq37ykszR5s4QV9+xhtzMAH+7eGl6QfAUDlOORGN88d51VDd387eLlw56dEwyMgN+inIyRjWDlcoKEpZSNgA+IYRPSvki1lkj6fArIcQmIcRG4EzgKwBSyi3AA1gbkp8BPj/SXZn+8uJunttaw/fPXaTEEIbBlVd3OMqVd6xib307N35qGcdMS98Qhr49JF60dVsla92hKLdedmLahjD0teBNJndffQefuWsNFSU53HDR0iHvQXKjL4PlLffF7bX88MktvHvRRL519lFpy4TUFOkNL+3h4bWVfPmseWkv+g4T8rOSLhyxmOQr969nU1ULf7zwBBZPUTSnBlGqrd1hrrh9FT2RGLdedmLKm1mTkZsZIDvDn1Tx7K5t57N3rWFWWS5//uQJQ65HdyOVRjHPb63hJ09v5X2LJ/HN96anYB3KUlBEf3hhF09sOMzX37uA9x+rZp2akJ+V1JmM2sGnXbXt/PmiJYOWeYwC/zO6aldNGz95aiunzy/nK2fNT/v/ywkGKMgKUOOho17dVc+3H7EyOz/78DFpBxEGM7ZausJcdftqgn4ff79k6ZAbSyUyWADOcnbW0N4T4e+XLB1SJz43BnuHnX1law408ZsLjkt7fe5typBkzfizbdt855yjhrW/OpHBgnxPbjjM3/67h4uWV6RVDu8wmO55fU89P//Xdt63eBKfO2P4maQ+eUGiMUlTp/v6f6Slm2vuWsuUIsshT1fnDFapYTXtWE0w4OPGTw0/kzRAnke1UTQmLWenpYu/Xbx0SA2m3CjIDhD0+5Lq018+s51XdtXzkw8enVa20yFZVYaUkofXVNId1rdsp7JqNQsh8oCXgbuFELVAWqd+Sik/leR3PwV+ms7/P1xe3VXPb5/fyYdOmMplw9i460V+Vgb5mQGqXTJYkWiML9yzltUHmvjTJ07g7fPSX/gcyvMy2e3RhtOJFOyqbecfl52o1FhKtjm0uTPEFbetQoBVEjGMJgBuTChIrtC2H2nli/eu46jJBfzhwuNTbtU9GPHnc8x1SXb+c1N1bzr//71rnhKZ0Hfob2co4mp8/Pq5HTyz5Qjfe/9RnDXEjozJKMsPst1jz5k1l9ext66D2z+tJgsbL9dLmTd2hLji9lUEAz5uvezElI8UGFRmXvKI4pbDLXzpvnUcPaWQ3338+LSiifHERxbd9sM8vr6K3z+/i48smabEkIiX29zpXbb1s39u4z/ba/nx+YtTOjdtFPif0FU9kShfum89uZkBfn1BelHseKYUZVPZNFBHbatu5Zq71jB3Qh43XLRESUAsWQmd48gfbLTKylR0ABssAHfdE1tYe7CZGy5aktJ5j4MxWDn1XSsOcu/KQ3zujDkpn6c5GMkcnue31vA727ZJ5ZyrVOXt3+/+em093MrXH9rAshnF/OADSSt0hySvKxyloycyYF9tVXMXX7hnHbPKcvnNx45TcgZfWVyALTG72B2O8pk7V9PZE+HuK5en7ZBDcqfcCphuYH9DJ3dfObQOk14MVm30q2ctZ+cXHz5GibMjhKA0z7us9NF1ldz0yj4uPWUGHztRTcOkCUn2qj+w+hDffHgTnaEInzplphJ5iaSyUp4PdGJF7p4B9gDnahnNKNLSGeYrD6xnbnkeP/3Q0coPyZxdnsvOmv5dk6SUfOfRTTy/rZYfnrdY2ULr4KTU3VLcP3l6Gy/tqONH5y8e9sboZHJrXWr5Q5EY19y1hsqmLv5+ybK0SxTiyc8MkBnwuUYratu6ueK21eRm+rnl0hPTjobGU5ak9GT9oWa+cv96ls4o5peKD17tLXlxKel6YPUh/vrSHj65vEKZMnXwipJKKfnhk1t5eWcdP/7g0UoipPF4RS97Ipaiq27p5sZPLRt2Iw03CrMzCPjcy25qWq05VZidwc2XDm/TrxfJFO2aA418/aGNnDSzhJ99WO06lWwfx90rDnDLq/u47G0ztSkjBfxP6KqbX9nHtupWfvmRY9Mu6Y5nwaR8tiYcdXGkpZvL/2Gdy/SPy08cdhOiRJy5dsRFT/zqme38d2cdPzx/8ZC7zXlRmms1fXLbY3b3igO9zo6qqhWw9aCLXnhzbwM/fGIL71w4ga++Z4FaeS7Xt7vWKitbPKWAnyvIPvaT19YzwL5o7Ahx9Z3W2njDxcPfx5aI17rYHbayj+FIjBs/tXTIBx974QRPE+eMY7dtqGzhtx8/XllwOlnn5z+8sIvnt9Xwf+8/KqVDdlPB6Ubstt4/seEwN/53LxefXMGFCrKPDl7vxMbKZr758CZOnl3C985dpE5eXiY1LjbS1sOtfP/xLZw6t5RPLp+hTF4iqcz870spY1LKiJTydinlH4FvahvRKPHjp7fS2BHidx8/XqkB7rB4aiFbDrcgZd9i9Otnd/DA6kq+9M65XKLBaJlZmkMoGuNQU2e/n9/22j5ue30/V759FhdpmFwzSnPZW98/siWl5HuPbeLNvY386qPHpl2PnYgQghmlOeyr73+t3eEoV9+xhsaOELdcemJaNb1uTC/OQQjYnyC3qrmLK29fzYSCTP7+qfRql91wNifvS+g298aeBr5jl/L88LzFygMFFaW5tHVHBkSeb3t9P3e+eYCr3zFbSTlIIjNKctjvMqe+/fAmVu23ymxURNni8fkEFaU57KvvHxjpDEW48vbVtHWHueXSE9MunUhkeokVndyXcL3W3rY1TCnM4sZPLU17j1kiFbZzmjiXX9lVx/cf38KZC8r5P4XKTwNveV11qLGTP/1nF2cfPWnIZwUOxjFTC6lu6e41uFq7w1x+2yraeyLcetmJQ26TnIxJBVlkZ/jZndCq/dF1ldz4smXYqdRNPp9genH2gHdq9f5GrntiC2csKFfq7ADMKs1lT21/eZVNnXzu7rVUlObwe4WVFGDp3X31HUTjHJ7W7jBX36murCyemaW5hCIxquIqc5yKnNrWHm781DKlAQDnKIF4eU6jl422szNnGEe8eOFUD+yt6z9Hb31tP4+sreLLZ83jvYvT3/vqUJobJDfoHzBHn9tyhD+8YFUsDOdIhGTMKMthT8L1bTncwjce2sCJM4v5/rlqso8OM0tzB7Sir23r5uo71lCel6lsy4jDjNJcDrd09SsDbOsO8/l71lKYncHvP36C0ncwkVSu5N0uPztb9UBGk5d21PLQmko+e/ocJY0A3Dh+WhGt3ZHeww5veGk3N7y0h0+cNJ2vvDv9Gno35tsHnMZnzv6zvYYfPbWVdy+ayLfPUbMPaYDciXnUtfXQHFe7fOPLey1n8l3zhnwIZupy8/udTB6LSb76wAY2VDbz+wuP1/Jss4N+phfn9JPr7G3riUS59dIT09q87MX8CfazjSvX21vXzjV3rWFmWS5//qSaUp4BcidaCiz+ev+zvYYfP2V1g0x3o68X8ybmc7ilm7buvmYif3lxN4+sszr3nXec2uyvw/wJ+eyKe39iMcmX71vPlsMt/PETJ7BoivomD/lZGUwtyu53j1u7rTP5wtEYt1x24qBt44eDs17siJO7u7aNz929lrnlefzxE3qVkQLe8rrqh09uxSeEFkfXyRa9sK2Gjp4IV962mt21bdxw0RLl89znE8ybmNfv3dpwyIpiL59VoqysLJ4Fk/L7Hanh7KGZWpTNHy5UP7fnTcxnb3074WgMsAIzV9+xhnA0xk2XLFNWyuywYFI+PZEYBxutAInT1OJgQyc3XLRESVlZPI4u2FXbd09//q/tvL6ngZ986GiOn16kVN5Ce33aFpdlvevNAzy4xgpSqw44lOdnUpidwc64IMCru+r56dOWrvvSO9WV/IP1TsyflN+vBH93bRvXPrCB46YVaqmsSrSZGjusphZF2UFuuGipsuxjn7w8qpq7aO+JAH2NXlq6wtx0yTIle7bjWTgpHynpXWeklHzr4U0cbOzkT584QUnfgWR43j0hxGeFEJuABUKIjXFf+4CNWkc1wqw90MS8CXl8Mc3OSMl496KJZPgFf3xhFz9+aiu/emYHHzhuCj/5oLqUfSLzJ+bjE5biAisN+8V71O9DSmSBXcO+odJqcfrkhsP84l/b+cBxU/jKWWoXpXgWTsrnYGMnTfYBvL98djtPb6rm22cvVBppSmTBpHw2VjUjpSQUifH5e6y9bX+9aCnzNDUCKMzJYHJhVm8b2fr2Hi6/bRV+n+DWS9XtbUtkga3kNtnPdlNlC1+8Zx2LphQoj8jG4yjXzVWWcn1sXRW/ec7aU/DFd+p7bxdMymd/Q0dvl8if/nMbz22t4XvvX8S7jlKr0BPlOvfY2YC/r76Dv31qqdIobTxleZmU5WWyqbIZsCKLl/1jFZkBH7dctkxZeZhq/ld0VUtnmP0NHfy/d81L+RD3oXDM1EIWTMznN8/t4AN/epXVBxr57ceOV15C7rB4SgEbKpsJRWJUNnVy5R2r7Si2nuDQUZML2N/QQVNHiM5QhCtuX0VXKMLfL1mmZb08anI+4ahky+FWonbToW1HWvnjhSdoeYcX2R091x9qAqyGAc9vq+X/zl007LMPkzF/kmVfrD/YDFhHZDhlxDoOHS/Ny2RSQRbrbXvm9d31XPfkVt65cAJfVtDoJREhBEdNzmedfX27a9v53N3WXsTfKtxzG89RkwvYeriVUCRGY0eIT9+2mqwMH39Ns4OfF4smF1DT2sPh5q7ecvu69h5u/NRSLc6H03V2w6Hm3goUp9GLjmDlwoR34s//2c3Tm6r5+nsXaHknEklWC3cP8C/g58C34n7eJqVs1DqqEeba9yzgmjPmKC+5iac4N8jnz5zL75/fBcDFJ1fwgw8s1hoRzssMcOLMEp7aeJiTZpXwlfvXU5wb5NbL1O5DSmT5rBKyM/w8sf4wHT0Rrn1gPSfNLOHXH1W7DymR0+dP4DfP7eSJDYdp7gz31hBfddpsbTIBzlhQzr+31vDm3kbufHM/L++s45cfOUZpwxI33jGvnKc3VbOzpo2v3L+emtZu7hnmwZGpMiE/i0WTC3hqYzXLZ5dy5e2rKMoJKt/blsjy2aUEAz6e2HCY+vYevvbgBk6eXcIvPqIvQAFw+oJy/vDCLp7ccJja1u5eA+LyU2dqkwlw+vxy/rO9lpX7Grnl1b28truB6y84jrfN0TunTp9fzr+3HmFnTRtfuncdDe0h7rtaTaMBjfxP6KrCnAz++aXT0DXdhRD89uPH8dUHNuD3Ce749HKta9hZR03k3pWH+N3zO/nXpmq6w1HuvnK5low/wLsWTuT3z+/ib//dw8bKFrZVt3Lzpcu0dcM8fX45fp/gttf24fMJnt1idSc+c2H6R7+4sWhyARPyM7l3xSH21HZw48t7+dTJM7jkFD17TAqyMlg2s4TH1h+mJDfIT57exunzy/ne+/VUxgCcubCcx9cf5oHVh/jRk1uZXZbLHy7U4+yANWd++s9t3LfyIH/6z26CAR+3XHqisn1eibxzwQTuWXGQm1/dyz83VXOktZv7rj5ZS0AF4MyFE/jJ09v4+8t7OdTYyar9VrO14xRnHx1OmVNKVoaPO97Yz782V/dWoKjqhJvIzNIcZpXl8sDqSlq6wlz/7518+ISpfOYdem1CBxG/J6jfL4RIuklmLCmuZcuWydWrV4/2MFJic1ULOUE/szVFoRP599YarrrDujfTS7K549PLXTuTqea6J7Zw2+v7ATihoojbLjtp2IcopoqUko/89XXW2hGnD58wlV9fcJz2sqaWzjDvvP4lGuzM2ffefxRXanbqwJpL5/35VWIScoJ+brhoiZJz2wbjgVWH+MbDVmJgalE2d1xxkrasSjzffXQTd684CMDSGcX843J1HQO9iMUkH/rr671Z4AuWTkv7/JFUaOwI8a7rX6KpM4wQ8P1zF3H5qWoblrix/lAzH7rhNaSE3KCfv31qKafNG52OgUKINVLKQdusG101PonGJBf8zVqvy/KC3PipZcr3UcYjpeSSW1fyyq56MvyCX37kWD68ZJo2eQDff3wzd7xxAICvnDWf/6exggOs/dXXPbkVgI8smcYvP3KMkiMrvHhxRy2X/2MVAG+bU8qNn1qqNdO9q6aND/z5VbrDMeZNyOOOK05SujcwkaaOEO/5/cvUtfVQnp/JPy47Uds2EoBwNMb5f36NrdWt5AT9/OWTS7Q55A7X3LmGZ7YcwSfgR+cfzcUn62v6AFYTmxte2gPAZ94xm2+dvVBrkPTB1Yf4+kOWvXLOMZP43cePV55M8dJVyRysfYDzy8Srl1LKkXEBU8AoreS8uqueQ02dvP/YydoNUodQJMb9qw7i9/n48JKpWtLbbjR2hLh35UHmlOfy3sWTtL648eyubefpjdW8fV4pS2eobeCRjDf3NrByXyPnHTeFmSPgOINlqDyx4TC1rT18dOk0LfuB3OgOR7lv5UEyM/x8eMlUrRnneOrbe7h/1SHmTsjjPYsmjtic2lXTxj83HeG0+WUsqdBneCby+u561hxo4rzjpyjt9DlUhuBgGV01TukOR9lY2cKiKQXasgKJ8l7eWcdRkwuUdhz1IhqTvLyzjokFWVpKoBKRUrJiXyMBn2DpjOIRWas2V7XQ2BHi1LllI7JHc199B7tq2jh9QfmI6IDa1m7WHmzilDll2krv42nrDvPa7npOqChW3kDJjVAkxks7apk7IW9EAv+xmOTV3fUU5wSVnfk6GKv3NxKJSZbPKtHyTgzZwRpPGKVlMBgMby1SdbDGE0ZXGQwGw1sLL12VUshICHEe8A7725eklE+pHJzBYDAYDOlidJXBYDAYxgKDFucKIX4B/D9gq/31/4QQP9M9MIPBYDAYUsXoKoPBYDCMFVLJYJ0DHC+ljAEIIW4H1gHf0Tkwg8FgMBiGgNFVBoPBYBgTpLqrtAhwOjGNzK60IbBmzZp6IcSBNP+bMqBexXhGgPEy1vEyThg/Yx0v44TxM9bxMk4YP2NVMc7htLMqwuiqscJ4GSeMn7GOl3HC+BnreBknjJ+xjpdxgkZdlYqD9XNgnRDiRawOTe+g/1kjo46UMu0+wkKI1eNlQ/V4Get4GSeMn7GOl3HC+BnreBknjJ+xjtI4ja4aQ4yXccL4Get4GSeMn7GOl3HC+BnreBkn6B2rp4MlhPgLcI+U8l4hxEvAifavvimlPKJjMAaDwWAwDAWjqwwGg8Ew1kiWwdoJ/EYIMRl4ALhXSrluZIZlMBgMBkNKGF1lMBgMhjGFZxdBKeUfpJSnAKcDDcCtQojtQogfCCHmj9gIR46/j/YAhsB4Get4GSeMn7GOl3HC+BnreBknjJ+xjtg4ja4as4yXccL4Get4GSeMn7GOl3HC+BnreBknaBzrkA4aFkKcANwKHCul1H+EtsFgMBgMQ8ToKoPBYDCMJqmcgxUQQnxACHE38C9gB/Bh7SMzGAwGgyFFjK4yGAwGw1jBM4MlhHg38Amss0VWAvcBj0spO0ZueAaDwWAweGN0lcFgMBjGGskyWN8GXgeOklKeJ6W8562qsIQQ7xNC7BBC7BZCjJm2vkKI6UKIF4UQW4UQW4QQ/8/++XVCiCohxHr765zRHiuAEGK/EGKTPabV9s9KhBD/FkLssv8sHuUxLoi7b+uFEK1CiC+PlXsqhLhVCFErhNgc9zPXeygs/mjP241CiCWjPM5f23tfNgohHhVCFNk/nymE6Iq7t38bqXEmGavn8xZCfNu+pzuEEO8d5XHeHzfG/UKI9fbPR+2eJlmXRmue/k/oqrGqp2B86arxoKfsMY1ZXTVe9FSSsY45XTVe9FSSsRpdlYiU8n/6C/ADe4DZQBDYACwa7XHZY5sMLLH/no/VLWsRcB3wtdEen8t49wNlCT/7FfAt++/fAn452uNMePZHsA6JGxP3FOvsniXA5sHuIVbE/l9YZ/6cDKwY5XG+BwjYf/9l3Dhnxn9ujNxT1+dtv18bgExglr02+EdrnAm/vx74/mjf0yTr0pibp2+Vr7GspwaZE2NiXU0Y67jSU3HPf8zoqvGip5KMdczpqvGip7zGmvB7o6ukHHwP1v8AJwG7pZR7pZQhrPKS80d5TABIKaullGvtv7cB24CpozuqIXM+cLv999uBD47eUAbwLmCPlPLAaA/EQUr5MtCY8GOve3g+cIe0eBMoElar6lEZp5TyOSllxP72TWDaSIxlMDzuqRfnA/dJKXuklPuA3VhrhHaSjVMIIYCPAfeOxFiSkWRdGnPz9C3EmNVT8JbQVWNZT8EY01XjRU/B+NFV40VPgdFVqWIcLOtmH4r7vpIxqBiEEDOBE4AV9o++YKcwbx0L5Qw2EnhOCLFGCHG1/bOJUspq++9HgImjMzRXLqT/IjAW7yl438OxPHc/jRUJcpglhFgnhPivEOK00RpUAm7Pe6ze09OAGinlrrifjfo9TViXxuM8HS+Mm3s4DnTVeNNTMD501Xh9/8e6rhpPegqMrurFOFjjACFEHvAw8GUpZSvwV2AOcDxQjZWOHQu8XUq5BDgb+LwQ4h3xv5RWDjb1cwE0IoQIAucBD9o/Gqv3tB9j6R56IYT4LhAB7rZ/VA1USClPAK4F7hFCFIzW+GzGxfOO4xP0N7BG/Z66rEu9jId5alDPONFV40ZPwfjUVWPtHnoxDnTVmH/WLhhdZWMcLKgCpsd9P83+2ZhACJGBNTHullI+AiClrJFSRqWUMeAmRjA1nAwpZZX9Zy3wKNa4apwUq/1n7eiNsB9nA2ullDUwdu+pjdc9HHNzVwhxGXAucJG9cGGXMTTYf1+DVS8+qgfAJnneY/GeBrDajd/v/Gy076nbusQ4mqfjkDF/D8eLrhpnegrGj64aV+//eNBV40lPgdFViRgHC1YB84QQs+xI0YXAE6M8JqC3lvUWYJuU8rdxP4+vCf0QsDnx3440QohcIUS+83esTaSbse7lpfbHLgUeH50RDqBflGUs3tM4vO7hE8Alduebk4GWuLT3iCOEeB/wDeA8KWVn3M/LhRB++++zgXnA3tEZZe+YvJ73E8CFQohMIcQsrLGuHOnxJXAWsF1KWen8YDTvqde6xDiZp+OUMaunYPzoqnGop2D86Kpx8/6PF101zvQUGF3VHzkKnT3G2hdW55CdWJ71d0d7PHHjejtW6nIjsN7+Oge4E9hk//wJYPIYGOtsrK42G4Atzn0ESoEXgF3A80DJGBhrLtAAFMb9bEzcUyxFWg2Esep/r/C6h1idbv5iz9tNwLJRHudurPplZ67+zf7sR+w5sR5YC3xgDNxTz+cNfNe+pzuAs0dznPbPbwOuSfjsqN3TJOvSmJunb6UvxqieGmROjIl1NW6c40ZP2eMak7rKY00dk++/x1jHnK7yGOeY01NeY7V/fhtGV/V+eR40bDAYDAaDwWAwGAyGoWFKBA0Gg8FgMBgMBoNBEcbBMhgMBoPBYDAYDAZFGAfLYDAYDAaDwWAwGBRhHCyDwWAwGAwGg8FgUIRxsAwGg8FgMBgMBoNBEcbBMhgMBoPBYDAYDAZFGAfLYBgiQohSIcR6++uIEKLK/nu7EOIGTTK/LIS4xP77j4QQZ+mQ4yL3XCHEj0ZClsFgMBjUYPSUwTC6mHOwDIY0EEJcB7RLKX+jUUYA64C+JVLKiC45HrKFLftUGXfivcFgMBjGB0ZPGQwjj8lgGQyKEEKcIYR4yv77dUKI24UQrwghDgghPiyE+JUQYpMQ4hkhRIb9uaVCiP8KIdYIIZ4VQkx2+a/fCax1lJYQ4jYhxEftv+8XQvxQCLHW/r8XuozrMiHEY0KIf9uf/4IQ4lohxDohxJtCiBL7c18SQmwVQmwUQtwHIK0IzEvAuRpumcFgMBhGEKOnDIaRwThYBoM+5mApnfOAu4AXpZTHAF3A+23l9Sfgo1LKpcCtwE9d/p9TgTVJ5NRLKZcAfwW+5vGZo4EPAyfaMjqllCcAbwCX2J/5FnCClPJY4Jq4f7saOG2QazUYDAbD+MPoKYNBA4HRHoDB8BbmX1LKsBBiE+AHnrF/vgmYCSzAUij/tioc8APVLv/PZGBbEjmP2H+uwVJObrwopWwD2oQQLcCTcWM51v77RuBuIcRjwGNx/7YWmJJEvsFgMBjGJ0ZPGQwaMA6WwaCPHgApZUwIEZZ9Gx5jWO+eALZIKU8Z5P/pArIGkwNE8X6ne+L+Hov73hkLwPuBdwAfAL4rhDjGLvfIssdgMBgMhrcWRk8ZDBowJYIGw+ixAygXQpwCIITIEEIsdvncNmCuzoEIIXzAdCnli8A3gUIgz/71fGCzTvkGg8FgGJMYPWUwDAPjYBkMo4SUMgR8FPilEGIDsB54m8tH/4UVsdOJH7jLLhNZB/xRStls/+5M4GnN8g0Gg8EwxjB6ymAYHqZNu8EwDhBCPAp8Q0q5a4TlTgTukVK+ayTlGgwGg2F8YfSUwdCHcbAMhnGAEGIBMFFK+fIIyz0RCEsp14+kXIPBYDCML4yeMhj6MA6WwWAwGAwGg8FgMCjC7MEyGAwGg8FgMBgMBkUYB8tgMBgMBoPBYDAYFGEcLIPBYDAYDAaDwWBQhHGwDAaDwWAwGAwGg0ERxsEyGAwGg8FgMBgMBkUYB8tgMBgMBoPBYDAYFGEcLIPBYDAYDAaDwWBQhHGwDAaDwWAwGAwGg0ERxsEyGAwGg8FgMBgMBkUYB8vwlkMI8S8hxKWjPIaZQggphAiM5jgMBoPBMDYxuspgeOtiHCzDuEAIsV8IcVYqn5VSni2lvD1NedcJIe5K5/9IQcYnhRCrhRDtQohqW9m+XafMVBFCXCaEeFXT//2SEKLbvu52IcSOJJ8VQohfCiEa7K9fCiGEjnEZDAZDuhhdNbKMIV11nRAiHPfZdiHEbB3jMowPjINlMIwCQohrgd8DPwMmAhXADcD5w/i/BkQex0E08gtSyjz7a0GSz10NfBA4DjgW+ADwmREYn8FgMPzPY3RVyroK4P64z+ZJKfeOyAgNYxLjYBnGHU7ESgjxGyFEkxBinxDi7LjfvySEuDLu+08LIbbZn31WCDEj7neLhRD/FkI0CiFqhBDfEUK8D/gO8HE7CrXB/myhEOIWO4JXJYT4iRDCb//Ob4+nXgixF3h/kvEXAj8CPi+lfERK2SGlDEspn5RSft3+zG1CiJ/E/ZszhBCVcd/vF0J8UwixEegQQsy1yzyuEEIcBP6TwrVLIcQ1QohdQohmIcRf7IzRUcDfgFPs628e3pNSwqXA9VLKSillFXA9cNkojsdgMBhSwuiq/yldZTD0wzhYhvHKcmAHUAb8CrhFiIGlY0KI87EU0IeBcuAV4F77d/nA88AzwBRgLvCClPIZrGidE406zv7vbgMi9udOAN4DOMrxKuBc++fLgI8mGfspQBbw6DCuO55PYCnHIntcAKcDRwHvTXbtcZwLnIiVHfoY8F4p5TbgGuAN+/qL3IQLIW6wlZ3b18ZBxv5zW8G/JoQ4I8nnFgMb4r7fYP/MYDAYxgNGV/1v6CqAD9gO8BYhxGcH+azhLY5xsAzjlQNSypuklFHgdmAyVvlCItcAP5dSbpNSRrCU0fF2dOxc4IiU8nopZbeUsk1KucJNmBBiInAO8GU7ilcL/A640P7Ix4DfSykPSSkbgZ8nGXspUG+PJx3+aMvrivvZdfb4ukh+7Q6/kFI2SykPAi8Cx6cqXEr5OSllkcfXsUn+6TeB2cBU4O/Ak0KIOR6fzQNa4r5vAfLcDBSDwWAYgxhd9b+hqx7AchjLsZzY7wshPpHqGA1vPYyDZRivHHH+IqXstP+a5/K5GcAfnGgV0AgIrAVzOrAnRXkzgAygOu7/uhGYYP9+CnAo7vMHkvxfDUCZSL/2/NAgP0t27Q5H4v7eifs9VIqUcoVtIPTYG7xfwzII3GgHCuK+LwDapZRS9zgNBoNBAUZX/Q/oKinlVinlYSllVEr5OvAHkmcHDW9xjINleKtzCPhMQsQq214AD2FFp9xINOAPAT1AWdz/UyCldMrVqrGUoENFkjG9Yf9fH0zymQ4gJ+77SSmMMfFnya59MAZ1YIQQfxP9OybFf21JQUa8LK+M1BasBhcOx9k/MxgMhrcSRleNb12VzmcNb0GMg2V4q/M34NtCiMXQu/n3Avt3TwGThRBfFkJkCiHyhRDL7d/VADOFED4AKWU18BxwvRCiQAjhE0LMEUKcbn/+AeBLQohpQohi4FteA5JStgDfB/4ihPigECJHCJEhhDhbCPEr+2PrgXOEECVCiEnAlxVf+2DUANOEEMEk13GN7N8xKf7LdZ+UEKJICPFeIUSWECIghLgIeAfW3gI37gCuFUJMFUJMAb6Ktb/AYDAY3koYXTWOdZUQ4nwhRLGwOAn4EvB4itdgeAtiHCzDWxop5aPAL4H7hBCtwGbgbPt3bcC7sVp/HwF2AWfa//RB+88GIcRa+++XAEFgK9AEPIRVTw9wE/AsVhOGtcAjg4zreuBa4HtAHVYE7wvAY/ZH7rT/r/1YyvL+IV560mtPgf9gZYqOCCHqhyo7CRnAT7CuuR74IvBBKeVOACHEaUKI9rjP3wg8CWzCGv/T9s8MBoPhLYPRVeNeV10I7AbasAKDv5RpnnFmGN+IwbYyCCEmAKdi1e12YU381VLKmP7hGQxDRwjxMnCzlPKO0R6LwWAYGYyuMow3jK4yGN66eG5cFEKciZU6LgHWAbVY7To/CMwRQjyEdT5N6wiM02BICSFEDlat+r7RHovBYNCP0VWG8YjRVQbDW5tknWHOAa6yW2L2w+4ocy5WyvphTWMzGIaEHcHejVVS9uooD8dgMIwMRlcZxhVGVxkMb308SwSFEJOklEdcf2kwGAwGwxjA6CqDwWAwjDWSNblYL4R4XghxhRCiaKQGZDAYDAbDEDC6ymAwGAxjimQZLD9wFlZnlHOAN4F7gccTTuMedcrKyuTMmTNHexgGg8FgUMSaNWvqpZTlg33O6CqDwWAwjBZeumrQLoIA9vkCZ2MpsDOBF6SUF6U7KCHEfqyWllEgIqVcJoQowWrzOROr7efHpJRNyf6fZcuWydWrV6c7HIPBYDCMEYQQa6SUy4b4b4yuMhgMBsOI4aWrUjoHS0oZwjpPYRvQChylcGxnSimPjxvct7CU4jzgBZIcgmcwGAwGg4PRVQaDwWAYCyR1sIQQ04UQX7cPr3vK/vx5UsolGsd0PuAcznY7VqvdMcmeunZ217YP/sE0OdTYyar9jcRig2cb02Xlvka2VevvZhyLSf6zvYbKpk7tsjpDEf69tYbmzpB2WbWt3by4vZbucFS7rD117by+u35E5sXag01sqmwhlYx3OkgpeXlnHfvqO7TKAeiJRPn31hrq2nq0y2rqCPH81ho6eiLaZR1q7OTlnXVEovqPf9pc1cKaA43a58VgGF3lTiwmWb2/kZausDYZUkpe31NPfbve9+hISzev7KojFNE7rzdVtrC5qkWrjGhM8uKOWmpau7XK6eiJ8PLOOu36aFdNG6v3618HXt9Tz4EGvbqhMxThhW01tHbre2cAalq7eX13PVHN+nvNgSZ2HGnTKiMcjfHqrnrturS2rZuXdtTSE9FvX6kg2TlYrwNTgQewWuCu0SBfAs8JISRwo5Ty78BEKWW1/fsjwESP8V0NXA1QUVGhYWjJae+J8IE/vUpnKMo337eQz54xR5usz969hs1VrZyxoJybLllGhj+lxOOQ2VffwcdufAOAL5w5l6+9d4EWOQD/2nyEz99jHTr/hwuP5/zjp2qTdcOLe/jzi7spyApwxxXLOX56kTZZ33pkE//ZXsvM0hzu/8wpTCzI0ibrUzev4HBLN6fMLuUfl59IVoZfi5zucJQL/vYG0ZjkUyfP4EfnL0YIoUXWG3sbuOTWlQD8+INH86mTZ2iRA3DXmwf58VNbycrwcculJ3Lq3DJtsn7y9DYeXlvJpIIs7r36ZGaV5WqT9Zk717C1upVjpxVy95XLyc/K0CKnOxzlo397ne5wjPcfO5k/XXgCPp+eeZEMo6u8eWhtJd94aCPFORk88JlTmDcxX7mMl3bWcfk/ViEE3H3lct42R8979PWHNvDKrnoWTyng3qtPpkDDvG7pDPORv75OKBrjsrfN5LrzFiuXAfDcliN89m5L/918yTLOWuQ6ddLmB09s4aE1lUwvyeb+q09hSlG2chmxmOTCv79JQ0eIs4+exF8+uUTLOrD2YBOfvGkFAD/70DF8crmed+mvL+3hT//ZTWlukLuvWs7CSQVa5Fx5+2o2VbVw0qwSbr/8JLKD6vX34eYuPvq315ES/t+75vGVd89XLgPg0XVVfOOhjQT9Pm7/9EmcMqdUi5zvPLKZ57fVMH9iHvddfQoluUEtclSRzFL/FjBTSvl1TQoL4O12hPFs4PNCiHfE/1Ja4RBX915K+Xcp5TIp5bLy8kH3QSunpStMZ8jyon/17Hb21unLZLV2WVHvl3bUcfvr+7XJqbWjaZMLs/jzi7tZvb9Rn6w2S9bcCXl855FNWiMfTpQwPyuDax9YrzViVNPaTdDvo6a1hx8+uUWbHIDath7yMwO8sbeBm17eq01Odzjae8/ufPMA/9leq03WkRbrWc0uy+VHT25hv8ZMVnWz1f9genEOX7l/vdYorzPfu8JRvv3IRm1ywJqDeZkBNle18Nt/79Qmp7U7THc4RllekKc3VvPw2kptsgbB6CoP1h9qBsAnBP/3+GYtMvbYVRyluUG++sAGbdHl/Q0dZAZ8bD/SxvXP7tAio7EzRCgaIy8zwG2v7+e/O+u0yNlnZ2HmlOfytYc20KYpW+Lo1Yb2ED94Qo8+6gxHaegIkZcZ4F+bj/DA6kNa5DjXUpYX5LontnCoUU/1S1WTpRd8PsHXHtygLSvnZHxX7mvkr//do0XGkdZupISinAz+8MIu1h1MukV02DS0W9VB5fmZXPuAPl1a2dSJ3yfYV9/Bz/65TYsMlXg6WFLKl6WUUggxSwjxWyHEI0KIJ5wvFcKllFX2n7XAo8BJQI0QYjKA/ac+ay4NnDKF773/KAI+wX2r9CwqYKVfL1g6jVNml3Lrq/u0vfAR24j+xUeOpSgng3+8tl+LHLCuCeD6C46jIxTVtig7sipKcvj2OQvZW9fBf3fqm1KRqOSdCyfw6bfP5F+bj1DVrKeJmZSSSExy+dtnceaCcu5484C2krCQ/f/+8LzFTC3K5uZX9mmRA9b9A7j+Y8chpeXQaZMVkxRkBfjheYupbevhqY3Vg/+jYRKOxjhpZglffOdc3tzbyNbD+spww9EYH106jQ+dMI0HVh2iXVNZYth+Vl9/7wIWTS7gVo3rRTKMrvKmKxSloiSHz5w+mzf3NmoJBDrrw08+eAzVLd08s1nPkWThiOSDx0/lI0um8sDqSi0lXM4a+uMPLmZSQRa3vaZnrXPWuV999FiaO8M8uq5Kj5xYjGUzirnytNn8e2uNFqfEuWfXvns+x0wt5NbX9NgovTbDx44nKiX3rhxwrrgSQtEYs8ty+eq757O5qpVV+/U4JeGo5BMnVfCeRRO5680Dvdenkt559pFjKcgKaLPpnLH/5ENHU93SzbNbNK0B0RjvWzyJi5bP4PH1VdrLktMllVqzx7A6JP0JuD7uKy2EELlCiHzn78B7gM3AE8Cl9scuBR5PV5YOnCjdlKJsTp5dyvNba7TJCkdjZAR8fGTpNA63dLNJU324oyjzswKcd9wUXtheoy0a6RhnCybls2xGMf/cpNG4jUkCfsF7Fk2iMDuDf23SdyZpOBoj4Bd8bNl0pLRKQXTgOMMZPsHHT5xOXVsPKzVlHJ1gQnaGn48smcqKfQ00dejZz+bMwalF2Zy5cALPbD6iLaAQjsYIBnycMqeUacXZ2gxDsBRdwC/4yJJp+ARa53skJgn4BB9bNo2OUJRXNEXhHcMqw+/jY8umsa26Vfv+iEF4DKOr+tETiRIM+Dj76MkAvLhD/VwIR6z3811HTWBSQRbPbdGjCy09KLhg2XS6wlFe2VmvXIaz/mRnBPjQkqm8vKteqyO3pKKYBRPztTqlAb/ggqXTAD3rjqPLMwI+Llg2jZ017Vr20DrOQkVJDqfNK9MWEHPW6vOOn0JmwKfv2URjBG1bobEjxOt7GrTIACjMzuDc46bwwrYaLXsYw9EYQsDp88qZXJil79nYttwFy6YRjkqt1TQqSMXB6pZS/lFK+aKU8r/OlwLZE4FXhRAbgJXA01LKZ4BfAO8WQuzCOtvkFwpkKceZpJkBH6fNK2NvfYc2b7onEiPo9/HOhRMAeGWXesUCfQtY0O/jjAXldIdjrNYWvekzzk6fX86Ww600ajLaI1Hr/gUDPk6dW8oru+r1Ge2xGBl+HzNKc5lVlsvL2ozbPqV26twy/D7BGxoWaIhXoIJ3HjWRmIRXduuag9a8CNjzoqq5iz11eoz2cDRGwOdDCMHp88t5Y0+9tg304ag1L4pzgxw3vYjX9ui5f2DNjYyAjyUzisnLDPCypvXCmRcBv4/TF1hrk675niJGVyUQsnXH9JIcZpXl8uZe9WtEKBrF7xNk+C1d+Kqmjfsh+x06YXoRBVkBLZUIveuqX/COeeVEY5IVe9UHrsIxSYZfIITgjAXlrNrfqKUBjnPPppfkMKc8lzc0PP9eXe4TnDHfWgd0lFaGem0GwRnzyznY2KknI2fr8JxggJNmlfDyLn0Bqgy/pb8z/Hr0dzhBn3aEoqzVUCbozDOfz5rPb+5t0LIGRKKSgM/HoskFlOdnaivhVUUqDtYfhBA/EEKcIoRY4nylK1hKuVdKeZz9tVhK+VP75w1SyndJKedJKc+SUurbCJQGPbYhFgz4OHZaEWB1H9KBE2kvyQ0ypzxXWx1t38soOGlWKUKgzcGKRCU+AX6f4G1zrQ2RqzRlYMJ2RArglDllHGntprJJT+leOGIpToCTZ5ey+kCTFmfOUTYBnyA/K4OjpxZqMQSgL5gQ9Ps5ekoBWRk+1h9s1iLLycwF/KJ3o+zaA/rmYN+8KKUjFNXWbSkc7ZsXb5tTysbKFi116lJKS9nZBu9Js0q07aV01ougXzCzNIdJBVms1vSsUsToqgR6IpbuADhmaqGW7njhqCRoN146eXYpLV1hLaWIYTtQFvD7OHFmCes0rEHxgb8lM4rIDPhYocMpicR6m1Utn11COCq1PJtILNb7bE6ZU8qqfY3KDd9IXKClojSHqUXZrNX8bE6xG6ms2Kf+lQtFJYG4e7a7tl1LB+KwHQjLDvo5bloRK/apn2fxQfOTZ1v6dI2GNToc6VsDTpxZQlt3hO1H1JfBh6IxggErMHHK7FLWja6+GZRUHKxjgKuwonNOycVvdA5qPNATdjJYfo6eWogQsFGbg9U3eY+fXszag81aa5wz/D7yMgPMLstl82F9TqOjYBZNLsQnYIumfSnxso6ZWgjokxWJxXoX52OnFdLWHeFQo3pnzsn0OMbTcdMK2VrdqqVlezguchjw+zhmaiHrD+lZ2EK9RruPWaW55GUGtJXEhmN975UzL0Zivh8ztZBoTLJdgzPnGE+OrKOnFrKnrp3OkProeK9hZWcBj5mmx4AfAkZXJRCKxMiMc7CqW7qVV1qE4p24adZ7pOOdtYIUfXJ217Ur31/Yl5UVZAb8LJyUr0VXOGW8AMdMLQI03bNIXxDpuGlFdISi7FdcxhuO9ekHgKOnFrCpslmpDIjPLvqYOyGP7Aw/WzSs1xE7QAX67IXeQFivXVfE1sOtyp3f+KB5YXYGM0pztDnyzvNfUlEM6Ek4ROyqE7CezWEN65lKUnGwLgBmSylPl1KeaX+9U/fAxjqhqBV9DgYsZ2RacTa7NUTtojFJNBanWKYW0NgRolZD173eUjBfn3Gmy2CKV5bZQT+zy/PYok1WrPeaFk7Kx+8TWhZmS1af0X70FH1GezjOuAVYNLmA9p4IhzScKxafrQU4dloRWzQoA4g32gU+n2DRlAJ9DlYk1mt8VJTkUJClz5mzaset+7d4iqO0Nc6L3jlYQEzCtmr1zlxvyU6gb77vre8YkbO+PDC6KoH4DNbCyVaL9l01avVUT1w2Zk55HlkZPjZXqTVIE/XgsdMKkRLlOiMcF+ABWDSlgK3VrcoDmvEBl/L8TKYUZmkJ0MbLOWqy1W5cdYOdeMcHLP2wv6FT+dlr8c6C3ydYMClfy5md8ffM0eGq9UI0bg81WM+mJxJTvnct7BJw0xP86LtnFSU55AT9WgKI8VUnR0/VF8xRRSoO1magSPM4xh19GSzrFs4uy9NWFgHW/heA+fY5JjoOOI7ELWAAi6cUUN3SrSU9Hh/xcGRt1XTAcfxLmZXhZ255nrYubta+HvtZTcrT5szFZ5XAMgRAT2Yu0eiYNyGPnkist52tSiL2Zlm/r28O7jjSpiUzF4n1RcOEsJy57ZrmYCjSN9+nFWdTmJ2h51klRJMX20pIx7vV2+Qi7llJiZbSkBQxuiqB+AyWc/aaciMu2ifD7xMsnFSgfA4k6kHHWdipWA9GYn17VgAWTSmkpSusvBtsvEEKsHByATtr1Buk4bgSwXkT8wj4hHKnpNfxsdeBRfaz2aX4esJx5W5gO7+HdTi/ffZCcW6QqUXZyvVCfGMQ6At+KH9vIgl2wuQCKpu6lDduCUX6gh8+n2D+xHx9JYJxzx9gp+ZDlNMhFQerCNguhHhWdevb8UwooURrdnku++o7lL/soQTjdu6EPED94gX9SwTBikYC7NXQEcjqttc3/eZNyKO6pVtL9DtRmc2ZkKvlmsBx5ixZmQE/FSU5WjoqhRPmn+N4q45Ou8ly5uDuOh1ZEUmGXXIGMLs8j65wlCP2WWYqid8X5cjSNi9ifVlUIQRzJ2gKyET6v8OTC7LIzvCzT0OjkMRs2Rx7XuzV1JQkBYowuqofoWiMzIB1gOmUwmyCAZ/yErH4EkHo04VKZSTowUkFWeQE/b1ncKmi1/C114X5muZ0fNAPrPOw9tV3KA8kxZcIZgb8zC7PVe7IJdoNs8stR171PUuUs3BSPq3dEeXVPPH71sC6HtV6IZRwLXMnWMHY7YorDSIxd5tOtT6wbKy++bxwUj47jrQpt4edLoJgdUYsywuyR+MZtOmSioP1A+BDwM9Q2Pp2vDMgg1WeR2dIvSEYSijPKs/PpCArwC4NGaxE5eJEPHUYTPGldJYs68VXrfwdWf0M6bI8DjZ2Kj93wqmrDsbJmlWWq+3+QV+JYFaGnymFWVruXygyUBmAvixqP8NDU9QdBjres8tyae4Ma+lmaXX26z8vtLQyjmsSAlY0cVZZLnvrNawXCdmyacXZBOxDIEcJo6sScNq0gzUXZpbmaDF8newFWO9RdUu30n1/4QQ9KITQYvgmGvHasn5x5Y5g2Q89kZj2TJmOdSdxzZlWnEPQ72OP4jUnsbphZqmmZxPp7/zOtnW4SmchvkEQWM7v9OLs3gOoVRGK9n82c8r1ZbHj59ncCXk0dYZp7lSXKYsllAmDHRQdvYDeoAzqYMW3u1Xc+nZc05OYwXIWYk1RG8cZcaLfOozbROUyvSSHgE9oK30MJDgioMeQdtquxsuKxiQHFbd4jcb6R/TBmhf7GzREJhNKBAFmajLaEzNYRTlByvIytWTLIi4LKKBlDg6MIuuTFYrbnAvWHKxp7VGesU18hwFmacgowMBsWYbdRWy0HCyjqwbitGl3sAxs1WV1sv+a50TJFc6DxIASWIEy1RmsxP1E5fmZ5Ab9Goz4/hF/Z+1RHY1PNHxnluVyqLFL6f7ZxHXA7xPM0ODIh6JygB4H2K/c+Y0NmM/tPRHqFGbKItGBtsKM0lzl5whGEuzHitIcfEK9jgsnPJsZtvOrMuAbjg3UbXM0BFlUkkoGy+BCj91i2Sm/qCjJAVDeZCAxewBW5EbP+Q/9ox0Zfp+2ErdIwgs5s8y6f7pKmQIJBqcOWZGEDaWOrO5wjGrFmU1XQ9p25lTT4zIHZ5flcqBB/RwMJZQaTCywDBwdZ2GFExxvXaUtYM33fmVU2vbD9M9Cg5UFPNTYqfyML7f5PltTxtYwPMIJmVNLd6g1sKOx/hUCOiof4hscOMwpz+NwS5fS4w7ij78AK6A5S4MRF7//E/rWHtXrXGL1xqzSXELRGIcVZsr6GinEl1vnKncW47v7AUwpyibo9ynP+jjHATjoeDae+ru+U0umLH7bwrTiHPboyGAF4m1Uy55TaSPEN8BymF2WR2NHSEufABUYB2uYOAuxUyI4uTALv08oz4r0be7te1TTS3Kobu2mJ6L2HJ2+AwMT6o81GEyhhLKSnGCAyYVZGkvB+qf8Qb1xG3LJKs0u01Xz7OLM2SVuTYpL3BxZmXFzsKI0hwONOhyR/oaHLgMHBkZ3dZW2OLLi57vj5Kt2iCMeGayYRNvaFEjYx7ZPQ8bWMDzCCe9TRWkOoWhMaSl7OBrrLdsCPQ5Wb3VAwjskpR4jLj4YMqssT3nWL9HxKc0Nkp8VUJ7BSFzjdGQWeptj+fpnfQ42dPb+TgWJRrzfJ6gozVGewbIOs+2/poFae8HNVphRmkN7T4QGhfo77OaUaLDpwglbI6aX5CCE6nnmEtBzgqJjNItlHKxh4uzBciIdAb+PqUXZys88CkX6d84B60WUEuWH5TqK0ueLf+lzOdioNqoCfaeYxzOzNFd5NAr6t2kHq8StKCdDuSy3CEtv6aM2Q7p/dFqHLLcsakVJDjWtPcoPy02MuIM1B7VkbBMUqd8nmFacrVyWlHJA6WPvs1JeRjPQ2HFkKS+lSTjWwZEViqjP2BqGRyTBkHfmgkpDPhrr/x5lZfiZVJCl1KGPuJRfzyhxouQaMmXxa3hpDpVNXUoDmomOjxBWWZ1KZ9Ft3dFRVhdO2OcD1rOJxCTVLerWgcQSQbBtBg3rWrwjN6kgi6DfpzSgmLj1A/S8m26ZMqcCSnWmLF6GtSc8W+l89nJKAQ5qqKZRwaAOlhDiVCHEv4UQO4UQe4UQ+4QQe0dicGMZp5Qp3hmZXpKtPErc162wT45TjqhaVqIydmR1haPUKT7MLTGCB9bLos2Qdrku1bLcso0T8jMJBnxUapoXgX5lluoXaBi4BwviSmI13MN4g92RVdnUqeUQxkSFPb0kR0OmZ2AJTVaGn4kFmVre4URZusqXe518l7VJx3s8GEZXDSSSsJ+kV3eozPrEZD+H3pGjcg70tk/36dWDiSVVABWlVqbscLM6Z2EkdJLbujOxINPqKlqv/p4F/f0zpaB2HUgsEQSYVWY5pSoz5uEEOToCb27ZmJm9lTVq5fjiGoOApePaeyI0KWxAEUrYhgHYAQOFGazYwHdzWrEeW1gVqWSwbgF+C7wdOBFYZv/5P01PuK/9rYNOoz3o75NVoclrD3kYt6DHkE58IaeX5FDfHlK+8T/kYUhrc7Di7qHPJ5herN7x7i1l6bfYZANoyKIOjBz1zkEN1+VmeISjUnmHTi8nX/V7ldgq12F6sQ5nbqCsktwguUG/vhJBn4sBPzoKz+iqOKSUAzafTynKJsMvOKDY8E18Z6eX5Ch16J31Lt5QLMrJID8roNjBGriuTrfXVaVyYgN1UkVJLocUBpLc1oK+TJlew9dZB1TOs8QSQbCqG3oiMWraVDq/A22TilK1a3VfgLRvPk8rzsbvE4qzi27zTENgItK/RBCsZ7NfQ/luYqZMdbZcJak4WC1Syn9JKWullA3Ol/aRjXFC0Wi/iD5YSqWhQ62D4GbcludlkpXhGxHjdromgylxI2m8LNWlj16ZucomtZu9exeAwMB7OBL7X7Iy/EzIz1TuOCae2QFxClSxM5JMIejosDRAkZbk0NodoUVhdC8cGVje5MhSX+Y7sFxHCKEpoDDQGJ1cZO1FHY0MFkZX9aO3CcmAaLxaAzsak/0cH7Dm9pHWbmUlxFGXRgpCCCoUr60Rl3VVTzamf1klWMEdlYEkN4MUrBIxpd3dXErjJxdajrxap3TgPdPRfTjsEeRTGXjrPXYg7tlk2NtM1DqlA8sqdThYiZ2awWp00dgRUnaosVuJIKh/NipJxcF6UQjxayHEKUKIJc6X7oEJId4nhNghhNgthPiWbnlDxcpgDYxIg9pSnJBL2ZmjWEbCuHWyIgcbFDs9MfdFDDRkRVyjhU6NuMJuSi4RfUeWrtJR18ycpk6W8cqgVFdWJDaw1EBbFjU20PHWEVBw2ssmRvimleRwuKVLaXc/t3IdGDknP8PvY0rRqEUUR1xXjWU95dYKGlC+1yccdSkRLM1GSpSd6+RkSfy+gdei1PB1aaYxMd/ag6O2fM89uAPqAkleBumMshylnSTdHDnHkVftlCTquxkautWFYwODv07gTVW3ut7yzQQbcmaZ2lbticfhgLWVBdTqUzdHzmmockBRyWPfHnf9uk0VqThYy7FKLeIPb/yNzkEJIfzAX4CzgUXAJ4QQi3TKHCqhaGxABktHfbtbpMOSpX7jv9tLoisF66aUpxerf/GdMhkvZaajvMQtwtKmOCvittcGrHuoukTQ6YAXv99QV1bErc5+cmEWAU0dOt2cYUDLhma3OWjt7VD3vNzKdRxZhxq7lG5sTjzWIV7WKCm8EdVVY11PJR4E7TDDjviqmguJTS6gL9ioah64NRACy7hSWYngdJwVok+Oz9mDo7Lk0SW4o9p+cCsRBLsRTTSmLLjodiYjqDd8IzE5wOaaXGi1aleVkYvGJFK6By5B3Xx2O9MJrKzPvnp1hxq7BZdzggHK8jKV2qkhF+fXOXpH1bPxmmczStVmy1USGOwDUsozR2IgCZwE7JZS7gUQQtwHnA9sHYWxuOKWwerbTK7OYOprcjFQ1mu765FS9lMG6eAW7XBk6divlHj/dOwVcYzAxOxBb7axsRPmqJLlnsGKX5yPySlUIiuZ0f7EhsOu2cjhEooMDCaAtbCpP7dloKyA38fU4mwOKnYcE8+mAj0ZLK9Snfi9Hc4G53RJ5uR3haPUt4coz89UIqu3fDlhvv/iw8eSmzmoalHOKOiqMa2nEg+AdagozaXN3uRekhtMW04kFsPv4Syo0htubdoBZpTk9radn1qUnbacxGMiHJQ7Cy5yVAeSkmUwwcr6OE0C0sFbF2Wz4VBz2v9/vJzE5+/3CaaXZCvLkrhl5aF/QPbYaUXpy3HZ+gFW1qetO0JzZ5hiBe9mOCoHBOfBejaqm8MMDOSobbrlFTBwnk1lUydzJ+QrkaUKTwtMCHGx/ee1bl+axzUVOBT3faX9s/jxXS2EWC2EWF1XV6d5OAMJRQc2uSjKySAvM6C8lADcJlW21d1P4enibvuiQF95UeIL6WRFKhVGCr3uX99eEYXOcMTbGQY93a4Sn9e0khxiEqoVdrzyctYcx1tlBye3VryOLB1llomy8jIDlOUFlb7DnrXjGhqFeM0LXXMwMbMJ1nqhwnBPlVHUVYPqKXtco6KrvDKMqtubR1wyWOX5mWQGfOqyMUmypaCwrM4jmDS9RG1lgNs+n4Dfx7RidXtwQlErop94PTMVn4XlthcTLAO7pSusrHLD69mo3FPm1qgK1K+fbudYQt8BvaqOWkkWNFfvYPW/luygVf2kqtGF28H2oK9PgAqShbidkGq+x9eoIqX8u5RymZRyWXl5+YjL74kMbHLhOAhKu814GO2zNBx+l8yQVp2CdaunBvXOnNNgIFGWjr0iyfZFgdoFIORyICaoL82xZLkrtgq7g1OtSic/ybxQXzo6sPORI2sknJ7evR0jEFCYrjij4MhSlSVNE6OrXPAyFp3SHVX7ViIu5d7OPmFVczuaZA8WqJvXyQI8LV1hWrrUOAuR2MCOvWCtqcquxeUMTbDOdcoM+BQ+f/esj/KyOo/1xtq3pKbk1asCINcOvKkKGPQ6v177llQFP5LM52qF+3/dtpeA2lbtXtnFsXwWlmcdh5TyRvvPH47ccHqpAqbHfT/N/tmYIRRxz/ZUlGQrPSU75PHCz4qLQi2fXapMVuKmS7A2LIPV3W/uhDy9skpyeHWXutJHtyYh8bK0tPhN6CKYlxmgJDc4IkZ77wZWlY1WIl5lBn3R40mFWUpkuWU2HVmNHSHausPkZ2WkLcer1t6RtfZgU9oyHLycfJ+G81V6ZSXM92k6Wk27dOccDUZRV41pPeXV1XRacQ5CqHOw3PZggbO+Kmpy4bEHyymrU3UtnkGXuJLywqnpl3m7dewFtWV1fecX9pfj81mt2lUFZ90ag0D/rM8x09K/Z6FojGI3B6vUKn+ubethYkF6eqjPWdQb/O0trx5Qop6NELBfUcljyKWs0pJjVbocbu5SUp6eLLv4wvbatP9/8M76leYGyQn6lXZfVEWyEsHvCSFKkvz+nUKIc/UMi1XAPCHELCFEELgQeEKTrGHRFY6SleHyEtpn26japNhjZ40SyxGnFlttUPeqzGC5nGUAerq4eZYjFmf37hVRJQcG7sECDQc7eux5APUZGK8a7smF2QQUt8kOueyXAz17Dr2ilDN0lWh4XNfh5u7euZMuyZz86XbzCVV4lSPqONjYK7M50oyirhrTesqrq6nTuEhVIxe3PVjQt+ap0IVe5Y59+zMVZkk83lNQpwO91zl1ZXVe2WywMiUqMwuJjUGgrwRa1TwLR7yyJHawWYEtFHY5DsBBZUA25FFWmRnwM6UwW2EGy6P6RKE+lVJ66oIZZTnUt/fQruDoooiHbuvNlo8nBwvYBDwphHjBbn37DSHE94UQdwohNgEfAFboGJSUMgJ8AXgW2AY8IKXcokPWcOkOx8jK8A/4eUVpDj2RmLK9UT22IZ1o4Pp9ghmluexTmC3zWvS1tK72ylQo3peSTMmoPrcsmSyV5TKOLJFwQjtY308pylbq9PSEB5bDAkwpykII/e1eQYOB49HFyZEVjUll3f28uh9ZstRvNoaBihs0ZGw9yjlHgVHRVWNdT3npDlB7doxXNcf0khza7WYa6dLnLOo1fAfTgarWcLcugqBW/7kdr+Ew027Vr2L/bMTjnuVlBijNVbef1cv5ndlbVpe+nGRB0hklORxu7lISePPa+gFWCa+qfUthl/PWQO08S7bOzFRY8ugVMAK0HFukAk/tKKV8XEp5KnANsAXwA63AXcBJUsqvSCm17diVUv5TSjlfSjlHSvlTXXKGS3c4SraLg6V6IR5s8qo9MNB9odRxsLGnIivu6wijSg64L2Sqzy3z2oMFVulHVVNXbxQmfVmWI+JWRmltyFb3rLojMTJd5npmwM/kgizl2bLEkhbQ4HhHvDOb6rNlyZ0elXs7BgsoVL4F92CNpq4ay3qqM2RVP+QEB+4EmFGqzoiz1ge9UfI+PegS1FRauuUe4CnMzqAwO0Nphz+3MjSVx0Qky5zPsPfP1rSl3wzJy4gHa81RZfiGPIKyU4qsMlEVtpDXMRfQV1ZXpSB4GRrErlObXRwoQ+XZbqEk+k2p8+uxBQP61gCVx5CoYFDtKKXcJaW8TUr5cynl76WUz0op1fZLHod0h92NTtVNBpxmGm6G9OzyXPY3dCo7A8Rrg6+TglV1Tc7ZVG6ynLax6qKr7nW7oOPcEfe0P1jzwjrYWE13P68SS1Bf+tgTjpLlUQo2TXFmzisaWpCVQVGOOgPHq54bRjiLWqy69Cj5fK9u7aYnoqZZzVjZg+VgdFV/uuzy8uygu4Fd396TdvY+GpOEIjHXYKNKB6u791oGyplRmkNzp5oghdsxEQ6qOglGY3LQsmulBmkSw1fFXp9kgZYZpWr3LbldS8DvY3pJjhIHq68xiPdWCZXZRdemHaW5NHWqKxN1k+HzCaaVqDnbLVk2zmlAoeLZJM1gKa4cU8Xohx/HKd0ee7B6N5M3qNHrbudtOcwqyyUUiSkrZQpFoq7RAVB7sLHX2V5gKdAJ+ZnKs0rJmjSo37iqfx9bKOLefhUsJ1Vl6WOPRwYL1Jed9SQpO1NZBpBMwTnRPeXzYgRKH3s89uaB5cxJRRFYR9ZYyGAZ3OkKWe9/doZ7BgvSX/scZ92tXL634Y5KByuZI6dgbQh57EN25Ki4FsfxzXFxFnMVHhORbN3pOwsrfcO3KxR1dXzB2c+qqKwuiSM3szRHibPYFbbfGZesr8rAWzgaw+8TA0r8Ie7ZKMhidnlsZQF1ujuZg5WbGaA8P1PJ/rhk78303szv2CoTNNpxGEgpbQdr4IN2NhCrLBF0K4sA9edZdIai5LosLKA2BdvRY70ouR6LsspuPY6T4XbwaVFOBvkKzy3rDHnLUr2PrSMU8XxWjqxKhYa0l5M/vTiHmtYeJS38ozFJZyhKnschtSozc+1J5kVvdE/ZHLTuTX6Wt9JWtV509ETIDfpdM96qM3OdoYjnszKMPskMkr5DQNObC112GaJbhjsnGKAsL1ONUxKyjDjXfc/2taiY1x2hiOch2dOLc6hs6kp735KjJ9yMeFAXSOqw5bg9/ylF2QT9PiXnLSXTRRUKy+o6e6Kez8Zp2pGufZLMNpmYn0UwoKasrjtJVYjT1U9Fl8eOngh5mUkcLAXzLNk2FrCdXxXzOYnOnqG4GkkVxsEaBp2hKJGYpDDbvV20yo3rnaGI6wIJ6qKQDu3dEfJcjECw9hB1hqI0dKTf3a+923pR8jzabVco7KzW5shyeSlVn1vmyHJTNk47YZWy3Ax2sDoxgrqsSFco4ho5hv4t/NPFMQi8rquixDJwVJTEOg5WMlmqsmVt3Vaph9scLMhSu7cj+TusNlvW3uMtyzD69K5HLvOuQlEGoytJ6R6o04VddqMdt4i/ym517d3eQYPpJTmEounvW3Kc0hyPNXVGaa6Se+Y8/wIXPetXeERER0+U3CRGPKRvo3SHo4SiMc/1emZpDh2h9LsPd/Y6pe6Bt+nF2Ur0QmuS40b69qErcEpDEXKSBCxbuyNplyI6+s3zehTt/XWcXzdbZGqx1d5+rB02PKiDJYSYb3dn2mx/f6wQ4nv6hzZ2abSdjJKcoOvvVbbkbuoMU5zjPnEnFmSR4RdKnJFYTNIeini+JCqj32093gYnWPevukVNWcFghrRKZ7jNVs5uRoDTTlhVd7/2ZA6W4kYrzV1hijzmoMpGIe1JnGGwFIK1jy39e9g+yBycYUf3VGRsk2XLQG1Aob3H20Asz8skM+BTNgfbkhijo4HRVf2pbw8hBK76ozA7g5LcYNqR5WbbOCvMdteFqsqQ2rrD5HvMNZXd6tp6UlhX03xXe7MkHk6Jo//SPQS2N7DjcT3T7IBVuiTL+qmyGwbT49MUNcdyno1XUFvVfG7tilCQ7X4t2UG/ssxvMn2gqqqmtct6Nl4JB1V7fzvtQK/Pxb5yGm6NOwcLuAn4NhAGkFJuxDrv438Wx8EqzvVWKkcUbSZv6QxR5OHI+X2CqUVqNiq29USQEk8lpjL67WxGLkiSgXEOwUuX1q7khrSTFVHRrtaKSnkbnCr3K7V2hz2vqTQ3SHaGX9mG7JauMEVJFk9QMy9aB4mEqdwz58zBZMZUW09Eycb51u4ImQHfIJvnFc4Lj/vn89kZW0WZudYuNYc+K8Toqjjq23soyQm6dkQDu5NgmmVIji4szfPWhSr24DS0hzxlgJpudVLKpHNa1fpT325txC/Ny3T9/Qy7rC5dZ6G1yyoXdgv4AcoyWI0d3jaKU1aXvhGfXI9Ptas2Djenl13sDZ4nmc8qznZLlsGy5KQf+O0MRegOx5I6PpD+fHZ0ZDI5Kvb+NrSHKPGwucFy5sejg5UjpVyZ8DM1u+fHKc5DdBpaJKJyM3lNa8+gikVF+vWI3d1uYqH7Segqu/s5siZ5yFJpSFe3dJGV4fPMwFSU2N1n2tPvPnOkpTvpSfLTitVlNqtbuplU6D7/rNJHNZm5xo4QUuK5sJXnW1kRFfOiujn5vFDZEOLwILJUzsHDzV1M9pAD9jusyMk/3NzFlGSyFB3K2h22yoWTXdcoYHRVHIcaO5lc5P18ZiloB+04C17rg9PaOt1gWX17T1LjSkW3usaOED2RGJM81nBV5/45nc7KvRwsRVmfI61dnvocLPulqTOc1iGwUkqOtHQzqcD9WpyyunT1Q/UgNoPjYFU1p3vPusnO8HsGmp3AW3OaZXWWreB+zxw56QbOHTvLa41WlcE60mrJKc93vx5VurSmLfk9U91wSwWpOFj1Qog5gAQQQnwUqNY6qjHOrpo2hLC6+LmhKi3eFYpypLWb2R5ywDLaVaT5HaUxtcjdaM/K8DOxIFPJBHbGO8VDlsqGEJVNXUwpynbd9K9a1qGmzt6F3o2KkhwaO0K9pRvDpaMnQmNHyNPBd2SpOEvM2Wg702MOOvvYVGRRnfFO8TAKpxRlE/AJJTXwlU1dFOdkuNbag9qSWGcOejG9WM3ejlhMUtXc5fkOg7oIbJVtMCeTNQoYXWUjpWTHkTbmT8z3/MyM0lwOt3Sn1aBmb10Hfp/oLRVORIVxJaVkb31Hb2MOLzmHm9Mrq3P0ktcarurcvwMNHfiE/uDOwcbOpO+n88zSCQTXtfXQE4klXd8qSnLS7u7m3PNpRe7zrCDLaliVblD7YGOn7Uh7d5KE9LrVRWOSyqauXtvDjWnF2Rxu7k4r6OaUgk/2CMQ6pbVpz7OGDvIzA55bWVRlFw82djJ5kHlW19bTu49uLJCKg/V54EZgoRCiCvgy8FmdgxrrvLq7nmOnFiZtfwmkvddhY2UzQFIlWZ6fSWNnKO0DbDdWNuMTsGCStyxVEYKNlc3MLs/1vH8TC5xD8NJ3HDccauaoyQWev1fV4repI8SBhk4WpSAr3evaYM+LoyZ7PysnW5auIb25qgWAeUnmoJUVUfCsKlsoyQ16RpCdjdmq5uCiKYM/q3SduZ5IlG3VrSnNi3Tn4M7aNrrDsaTzXVUE1lmbFiaZg6OA0VU2O2vaqW3rYemMYs/PzCxLPyO8obKZOeW5nuWvKpyF6pZuGjtCzB9EN8Vkn+M/HNYfagZI+q6qOPdvU1ULs8vzPPVfeX4mWRnpVQV0h6PsONKWdI2bYGcc0jk7aEOlpR8WTyn0/MyM0ty0ddGGyhbyswJJg4pTirI5nMY5k1JKNlW2cPTU5NcC6c3nbdWthKIxFiaZz+V5mURjkqbO4Tft2GSv0cnmgIp+ARsqW5g/Kd/TKS3NteZZfRpVQk0dIQ41dnF0knlWYT8bVfuZVZDKQcN7pZRnAeXAQinl26WU+7WPbIyy5kATaw82876jJ3t+pjwvU0k7z39uqibgE5w8pzSJrCBSQmMaL6KUkme31HDc9KKkm9ZVdNxr6Qrz2u4GTpntfU2qOhxtrmrhcEs3b0ty/1R1n3lu6xEATkkiS1Vk8rktNQT9PpbOKPH8zPQSq6tSU5qG9DNbjjC7LHfQrEhlmgq0JxLlxe21nDK71HOhBjUK4WBDJ1urW5POQVUtpl/eWU9PJJbSvEg3IPPs5hqApOuFqjn47OYaSnKDLJzkrbxHGqOr+rjt9f1k+AXvXjTR8zNOIKOmdXiGT11bD2/ubeCMBRM8P6OiEdO/Nltr6+nzyzw/M01BNubZLUeYXpI9aGVAOu9OS2eY1/Y0cNo872sRQjCtOCctZ/E/22sJRyVvm+Mtp8x2sBo6hm/4PrP5CHmZAY6d5m34TivOpj2NoE44GuOFbTWcPLvUtcGBQ2lesHcP1XBYf6iZI63J7QUVZ7s9t+UIQsAps1N5NsO7Hiklz2w5wjFTCz33RkH687mquYuNlc2cOtf7WoIBH4XZGWk5WM9ssdaApM/GOYN2DJUJDtoCSghxbcL3AC3AGinlej3DGpvsqWvn6jtWM7kwi08ur/D8nIq641d31XPvykN88ISprm1WHcrsOu6G9hAT8oe3H+Kx9VXsqGnjVx89NunnphZlU9PaTTQmPTfODsaf/7OLrnCUT5zkff8g/UhhLCb55TPbycsM8IHjpnh+LjPgZ2J+Vlpllu09Ef70n90snJTPCdOLPD/nKO50Svf213dw36qDnHvs5KQLZ3yr9mR7F5Lx6LpKVu5r5HvvPyrp5+IbQnhtdh6MW17dR0NHaNB5Mbkwi501bcOSAZbi+dWz2wn4BB9ZOi3pZycVZlLTOvyIaCgS4/rndjClMIvT55d7fm5KUTa+NJ382tZubn1tH/+fvfOOjqs4H/Yzq95lVXe5925jQ2ghQCihdwg1QCAfSWghQMKPEkrovfduMBB6NdWAMa5yr3KRLKv3unW+P+5eab3evrOWBPOcs8fyajUzO/feeeet89ux+QGV4cEeJYCnBrhXA7FsRwOfr6vk0oNHRrwOxAItqww+WLmLuYtLOf83wwLKhMIuBSv8e1xKyW0fr8PpkpyxzxC/nzOMZZEbReparTz1XQmzivoxqsC/xd/MzaiOMMx23pIyFpbUce2R4wIbeDzO/fPngQrEg19twu50cepM/3MGhnepOkLPUk2Llds/Xs/QnFQOCLDxzevyLES2id9c1cL7xeWcOXtowLkwQyGrWjr9FgYLxJ2fbqC6xcofA+y5wMgDXLurOez2wdgv3PfFJjKS4zlqsn/jeWpiPFkpCV35TeGyblczz/2wjUPHFfgNEQUPr0+LNWAEkz8+W1PJmvJmbj9xUsDPDe6XwierK3C5ZEDl1RdOl+TmD9YihOC0WYFlaV56YsQKVrvNwaNfb2HCgMyAinzXfRaFzFZNKCGCs4BLgUHu1yXAkcAzQoh/xnBsvYqdDe2c/ezPCAGvXTQn4OYW3LkOEW6kF2+r56KXlzAiP41/Hx14c2tWIor05v1hcy3XvbOamUX9OHlG4IekICMJl4zc4vXqoh088/02/jhnaEA3PMDArOSIFzEpJTd/uJbvN9dy3VHjAiqoYAjnSItcdNqdXPLKUnY1dnDrCZMCCufs1AQS4ywR91XV3MkFLy4hMc7CP48cF/Cz0ZZq/2xNJf94axX7jcjl7H2LAn62wL1RizTU5ONVFdz7+Ub+MHkABwSw7IIRPlPbaosoNl1KQ4h+tKqCv/9utN/YdJOCjOSINzl2p4u/vr6cDZUt3HL8JL+V3MCw8OWmJ1EV4f3e1G7n/BeWYHU4ufGYCQE/a25EayLciJbUtHLJK8sYmJXC//vtyIjaiCG/elm1ZHs9/3hrJbOH5XD90YHXCFPBqoxgQ3L35xt5v3gXVx42hhH56UH6icxQ0WFzcuFLS2nqsHPjsYHva3MNiuR5XVhSy7/eXc2Bo/O46MDhAT9r5pNEIpveWFzKCz9u5+w5RQHDtsC4NpHMWafdycUvL6W+zcZjZ80IaADJTIkn3iKoi0Ae1bVauejlpWSmJHDFYaMDftZU8qsj8JS+smgHz/2wjQv2HxbQUwqGsTnSfdCdn23ghy21/PPI4PsFQ/kN/9pUNXdy4UtLyEhO4LYTJgf8bH6GoYjWRuDB2lDZzD/fXsXEgZmcPiu4Iu+IMBTxjk/WM39dFf8+enyX4c4feelJ1LaE34fD6eJvr6+goqmDm46dEHB/lZeehBCRrQGxIhQFazAwQ0p5tZTyamAmUAAcBJwfSadCiJuFEOVCiGL362iP310vhNgihNgohDgikvZVU93cyR+f/Zk2q4OX/zQnqEABusohhxs2taK0gQteWMyg7BRevWhOUItPnrvCYF0EVqiFW2q56OUlDM9L45lzZwW1RptVYiJZKOcuLuWG99Zw6LgCbjp2YtDP56UnUddmC/tQWSklt3+8npd/2sGfDxoR1OoFxveKRDkwlKtlLCyp455TprLPMP8he2BY1CPtq7qlk7OeWUR1cycvXLBPQOsXdG+eIunr243V/G3ucqYOzuLZ82YFtdSa1bAi6evztZVc/sYKZhb1455TA3tQwRDWTpeMKCT2gS838+g3WzhjnyFcdsiooJ/PT4/Mimx3C4Uv1lVxy3ETA4ZpefYVyeagqcPOuS8sZkt1K0+ePTPo2tQvNZE4i4hIyd9e28Yfn/kZkLz0p9m9rUQ7/Mpl1bbaNi5+eSmDs1N46pyZJMUHfm5TEuPITI6nOsyN/EsLt/PEtyWcNWcof/1d8OeoICM57PvN4XTxt7krWLmzkYfPnM6UwdkBP5+eFE9aYlzYSklJTSuXvrKM4XlpPHrWDBICGEKgWwaG+6x+vaGKf7+3hoPH5AdVFqHbgxXO/sHlklw9byUrdzby4BnTmBzA2g+GPMpNTwx779Buc3DhS0upbOrk2fNm+S03b2LmeoW7ln67sZqbP1jL78YVcMMfgs9ZTloiLZ2OsAudPP/DNp5esJVz9yvi7BD2CwWZ4csFY86W0NRh57nzZwWV354erHDY1djB+c8vITUpjmfPmxXQsAeQ71Z+w30+X/5pO8/9sI3zfzOMPx0Q2CgBRshjuM+MlJIbP1jLVxuq+c/xk5gTIKQfICHOQk5qYsTGw1gQioJVAHjOjB0olFJ2eL0fLg9IKae5X58ACCEmYJxbMhHD8vi4ECJ8P7xCGtttnPPcYmparLxwweyglieToRGco7OmvInznl9MXkYSr1+8b1f4XyAi9WD9VFLHn15aQlFOGq9dNCekMLJIH8bXfy7l+v+t5rdj83n87Bl+E6J37yv8JE8pJbd8uI5n3Q/+9UcFDvfw7Cvch9K0FH63qYY7T5ocNNzMJC8CBauquZMznl7ErsZOnj9/n4C5VybZKQnEWUTY98WirXVc8soyRhdk8MIFs/0eIOmJuekI9774ZHUFl722nEmDsnj+/H38VvTzpCBCJf+B+Zt4+KvNnDZrMHecODmkcIiCzCTqWq1hKfl2p4vL31jBZ2srufGYCZz3m2Eh/V1+RvheVGNt+pl1u5p49KzpQS28YIQv56Unhn0PltS0cvrTP2F1OHn1ojmMKghuZOoBfrWyqqHNxp9eXIJFCF64YJ+QQ7H6ZyWH5cH6dHUFN3+4lsMnFHLr8YE99ib5GUlUN4euLJgRCF+uNwwUR0zsH9LfFWaG53Gud89ZQpyF58/fJ2hUCkRmTFpZ1shlr61g/IAMHv9jcCUODI+czeEKa/9w3/yNfLy6guuPGhfynOWmhbfxtTtd/L/XlrPKrfjOGOq/iIpJQQThmxsrW/jr6ysYU5jBw2dODykU2TzOJpw9w0erdnHrx+s4YmIhNx07MbT7OT08Ge50Sf4+t5h1u5p59KzpAQuCmGSlJBAfpvxuaLNx7vOLabM6eOH82UEjNKD72oTzfb7eUMXNH6zlsPEF/F+QiAmTcOcM4MEvN/P6z6X85bcjg0bRmBRkJkfkAIgVoShYrwE/CyFuEkLcBPwIvC6ESAPWKR7P8cAbUkqrlHIbsAWYrbiPkOmwObngxSVsq23jmXNnBazI5I1ZtjTU0pRba1o59/nFZCQn8NpFcwKep+RJZnK8EXYWxs37U0kdF7y4mKE5qbx28ZygFiiTrqpDYdzAry7awb/eXc0hY/N58uzgVlWTcC2FUkpueG8NLy7czoUHDA/qTt69r2Tq2kKvxGiErizhhy213H3KFE7fJ7jVq6uvMBeaiqYOznh6EVVNnbz0p9lBrTgmkWykV5Y1cuGLSxiSk8orF84OacMBHgpWGH29X1zO3+auYNqQbF65MHRvSJcXNQxh/cD8TTz01WZOnTmYO0+aEnKsebghsaZy9cnqSm74w/iQLHsm4Xo2G9psnPXMz2yoaOHJs2fy+xA3VJH0tbmqhdOfWoTTJXnjz/v1qsIWXvwqZZXN4eIvry2jvKGDZ86d2VXpLBSMULTQ7oU15U1c8WYxM4b245EQN71g3G8ddidtttDKwT+9YCuvLirlkoNGcO5+w0L6G7OfUL1xNoeLS19ZRkVTJ0+fOytgyWxP8tyhW6EaQ0rr2rnwpSXkpify/Pn7hGSwgm5ZG+q1eXvZTh77poQzZw/l4gNHhPQ3EJ5nweWSXPPWSr7dWMPtJ04OWYlLTYwnIyk+5I1vTYuVP724hNTEOJ47b1bAwlue5LqNCqF+n4UltVz15kpmFfXjoTNCv58L3Ip8qAaD/36yni/XV3HjMRP43bjg0QxgyO/cMPKW2qwOzn9xCaX17Txz3qyQHQGmwSDUa7NuVzN/fX0FEwZmhjVn+RlJtFgdIR8J8cqiHV0y+59HjA3pbyC83EWH08WtH62Lac5WKFUEb8WIZW90vy6VUv5HStkmpfxjFH3/VQixSgjxvBDC1FwGAWUen9npfm+v43C6uOz15RSXNfLwmdMCVknxhXm4W0VT8OIJje02LnxpKQIjvytYPKsnXWFnIT6Iq3c28acXlzA0JzVkL5lJuJ6K91aUd4UFPnnOzLCSgsPdtN/z+UZe+7mUSw8eyQ1/GB+ycmX2JSUhVSByuHNrfiqp475Tp3JakBhnX32F+p2a2u1d3tOXL5zN7OHBPVeeGDHpoVnztlS3cv4Li+mXlshrF4WudINbyY8PXcn/ZmM1V80zBFu4oWZmPH+ofT35XUnXQn3XyaErV9DtsQ1F+Lhckn+8tbJLuboojE2O0Zex0Qklt8w0/GypaeWZ82Zx6PjQhHZXX+mhrxe7Gjs457nFCAFv/Hm/gMc49DS/Vln1n4/WsmhrPXefMiUk77Ynoeb61LVaueSVZeSmJfJUmGt5OOXAP15VwX8/3cAfpgzg2iB5pt6E6sGSUvJ/761h8fZ67j11aliG09y0JCwitNCthjYb57+wGIfLCKkNpwhVYVdOWfBrs2xHPf/632r2H5XLf44PzQtjkh+GjHj82y28V7yLa44YG7QY0R79ZIaWt2R1OLn01WXUtVl59rxZAc/X8ibXo+BXMLZUt3LJy8sYlpfKs+fuE/b9bHO4aO4Ift7SvCVlPPvDNs7br4jz9w/d4Aah7xWklPzznVWs3tnII2dOZ98QjbBmHxDanq6mxcpFLy0hMzmB584L3VgA3YpcKArjgk013Pj+Gg4bX8h/T5oc1v0cTn7cbR+v57kftrFoa13I7YdLKB4spJRLgLnAu0C1ECLo0yWE+FIIscbH63jgCWAkMA3jIMj7wh24EOLPQoilQoilNTU14f55UO7+fCNfb6jm1uMnBSzJ7o8uD1aQZFi708VfXl1OeUMHT50z0++BroEINeyssd3Gpa8uo19qAq9dFJ5yBcZhwxnJ8SH19VNJHde8vZI5w3N4/OwZIXuuTPLCCMV45aftPP6tYb279sixYT2Q4GHFCdKXlJL/e787JvikIEVBfFHgPrfMHsRbZnU4ufiVpZTWtbu9p+FtnCD0Bbq6uZNzn/uZOIvg1QtD956aCCFC9syt2tnIZa8tZ2xhBs+FYdE16fZgBe/ro1W7uPPTDRwzZUDYypVnX6EIn/vnb+L94l384/djwlauwLgH7U4ZNCRot9yUM6YHrE7ot68Q74umDjvnv2CEnLxy4ezeGha4G782WfXZmgpeXVTKnw8awQnTw9fvBmYZClag9cgwKq2gptXKU+fMCltudOfuBpaFGyqbuWpeMTOL+nHfqVPDfl4LMoxiGsE8Cy8u3M6bS8v42+9GcVyACrO+iLMIctKCGyiklFzz9ip2NnTw7LmzGBlC3rYnoXqwdjV2cMkryxmYncxjIeSQeWOuBcHmbOn2eh74cjPHTR0YUXGbAneYaCBMxXfZjgbuPXVq0Lw7b/JC3MR32p38be4KEuItvHjBbLL8HJDrj1CjKJZur+ff763mgFF5IYfS7dZPiMrvm0vK+HhVBVf/fmzIXkWTNHfuYjB5YHUYxbzq2208e96ssPcIXZ7fIP3UtFi5at5KRhek88iZ04PmkHlTkGnMWbCw/nlLyrqinY6fFju7WNDRCyGOE0JsBrYB37n//TTY30kpD5NSTvLxel9KWSWldEopXcAzdIdWlAOeLoHB7vd8tf+0lHKWlHJWfn74m4xAfLamkqcXbOWcfYtCjv30Ji89iXiLoCLAWRZSSm58fw0/ba3jrlMmMytIkQR/hLK5dbkkV7xZTE2LlcfPntm1SIRLKBaCrTWtXPLKUopy03j6nFlhK1cQugfr+8013OSOB741TOvdHn0FWZif/X4bcxeHFxPsq69g3jIpJde/s5rF2+q559QpAc9QCthXCPeFw+nir3NX0NBu58ULZkek4ENoOUTVLZ1c+NJS+qUm8uIF+4Qc+uFJSmIcGUnBlfxlOxq6vGT3RrBZg9BDYt9aWsaj32zh9FmhFc/wRaghsXd+uqErN+XISeEJU5OCjOSglRidLsllry1nW20bT507szeHBXbxa5NVFU0dXPvOaqYMzuIfvw89jMaTwf2MA3orAoSy//fTDfy0tY7/njg5aOEEX4Syvnbanfx97goykhPC9pCZFGYm02l30dzp37OwdHs9t328nsMnFHLlYWPC7gMIKfT61UU7+HJ9FdceNS4iuR5K3pLd6eIvry3Hanfy7HmzIjoiIz8jCZszsDemqd3O5W8UMyg7hdtPDC3vzptQKrK+saSMeUt38rffjeKYKeEpvkYfoRnf7vx0A+srmrn31Clheci6+wkeRVHfZuMvry1ncL9UHjtrRtiKAhh7yGD32eaqFm7+cC37j8rlLwdHVtU1P4Swurs/28jy0kbuO3Va0ArQPvtIDz5nLpfk6rdW0tJp55EzZ5CSGP4a0FUEK8D+ak15Eze8t4YDR+dx/VHhecnDJZSrfiuwL7BJSjkcOAxYFE2nQghPl9CJwBr3zx8AZwghkoQQw4HRwOJo+gqX8sYOrnlrJVOHZHPDMYFLpAciziIozEymIoAH6/kftzN3cRmXHTKSE6eH7w0xMcOLAvHw15v5dmMNNx47gWkRnn9j9hXoIem0O7ns9RXEWQQvnL9P2NYhk7TEOFISAltWqps7ueKNYkbmp/NwBNYOk1A20st2NHDnZxs4cmJ/rolwMwOhKY7zlpbxvxXlXHHY6KisK3kZSdS1BQ47e+DLTSzeVs/tJ06KaOE0CXZfOF2Sy+cW09Jp5/nz9+kqqxxRX5mB+6pvs3HZa8vpn5nM0+cGr4Lot58QLJXrdjXz7/fWsP+oXG6LcPPh2Veg7zV/XRXP/rCNc/YtCis3xVdfwQrIPPbNFn7YUsutx08KeFhpL+NXI6uklPz73TXYHC4eOmN6SIWDfDHYfXCqv7P53l2xs6taWKiFfLwJZUN6xyfr2VTVyn2nTQ3bQ9bVT5AjCJo7uxWF+0+LzOgCpjHJ/7OzsbKF2z5ez8Fj8rkgxCI33qQmxpORHDhv6cEvN7GyrJG7TpkS8IywQHQrv77nTErJte+soqq5k4fPnB5x5VDTMOvPU1ZS08p/PlzHAaPyIlZ805LiSU+KDxjy+tX6Kl5cuJ0L9h8Wcj6UN8GiKMw5a2q389hZMyLeAwULGzc9cWmJ8Txw2rTo7ucAMm7Bphqec4c5/mFK+NFc0O3BCuSRe/aHrSzYVMP/HTMh4lD0giAyu8Pm5PI3VtAvLYGHz4h8zxgqobRul1LWARYhhEVK+Q3GeSPRcLcQYrUQYhVwCHAlgJRyLTAPIyH5M+AyKWVoWXEKkFJy/f9W45SSR8+cHpHnxZMBWcl+c7C+2VDN7R+v46hJ/bn68Mg37GA8IIGKNHy7sZqHvtrMSdMHhVS2PHBfgS1Rt328jvUVzdx32tSQE4d9ESy3zOmSXP5GMe02J4//cUZIFej8EczC2thu4+9zVzAwO5m7Tgk/1MxnX37mcGNlCzd9YFik/va7wOeLBO0rSNjZtxureeybEk6fNSSicMfd+gqiYD3y9WZ+2lrHf46bFHUeTyAvqpkLVd9m4/E/zoj4kGUwQmIzk+P93u+tVgd/fX052SkJPHTG9LDDczwJdg/ubGjnH2+tZNKgTP4d5ODnaPtatLWOB7/cxAnTBnJ6gENkeyG/Gln1+doqvt5QzVWHj2F4hF5nMA7OBd/n5a0pb+K6d1YzZ3hOVPdctrsimr/naP66Kl7+aQcXHTA8opBXE1OR8xdW93/vraGyuZMHz5gW1RED+RlJfnOwPD1xkXrOTcyQR18s2lrH498aa/fRAQ7GDUaw8PjXfi7ls7WVXHPE2KgMs6Z3scW6p6fM5nBxxRvFJCVYuC8KxRcChyJWNXdyzdurGD8gk+ui8FwE8y7OXVzG/HVV/PPIsSEXm/BFvvuMqkY/8vv2j9ezobKFe0+bGpXBMpB3sb7NxtVvGSF71wc5kzUQZtl5f3uElWWN3P3ZRo6c2D+qPWr3tfHdz+2frKOkpo37Tp0W0aHX4RLKrrRRCJEOLABeE0JUA23RdCqlPCfA724Hbo+m/Uh5a9lOFmyq4T/HT4xKOTAZmJ3Csh0Ne7y/sbKFv801KrFEu6DA7mFn3g9aWX07l79RzNjCDG4/MbyEQV8UBNhIf7RqV1c+QKTWIU8Cbdof/srYsN9zyhRGR3DSuSeBcsuklPzjrVVUt3Ty9qW/Cbmynj8Clflttzm47PXlpCcl8ODpoVfo8UeeR9iZ92JS0dTBlW8WM65/BrccH/xcsmDkp3fnlnkrGgtLarsU/FODnPgeCgUZyazc2ejzd8/9sI2vN1Rzy3ETo/LIdfWVmez3vrjh3dVsr2sLu1iMLwLlHNrdeVdOl+TRM2dE7JEz8TzPbpxXlGFtq5W/z13BsNw0blOwXuxlfhWyqs3q4JYP1zKufwbn7z8sqrb6ZyUTZxGU1u+uYNW32bqKWjwWYmlxfxgVTX2v5VXNnfzz7ZVMHJjJNUdGZ2gMtPF9b0U57xfv4qrDx4RUWjwQZui1lHKP5+O/n6xnY1ULL16wT8Rh+Cb+inY0tdu58s1ihuWmhXSmViACGfw2VrZw60frOGhMfliVCX3RdW2arXsc5Pvgl5tYXd7Ek2fPDDu3x5t8P8Y3p0ty5ZvFdNicPBKl8TwjKZ7kBItPRa6kppVbPzI8cX8Ks6iFN545Zd6Gws/WVPLKoh1cfOBwDgnheI5A5GcksWCzbxlneuJevCC8QiDeJMZbyE5N8Blp1dJp5+9vrKAgI4k7T45O5nR5y31cmy/XVfHqolIuPnA4B4zeO1EZoayaxwPtGJa7z4AS4JhYDqonaGq3c8cn65k9LIez50SWX+PNuAEZlDd20OgRilPb2l2C9NlzQzv7Jxj+rFCddif/77XluKTkybNnRhTTukdfGUm025y0elmidtS1cf07q5k+NJtrwiirGQh/se4Lt9Ty8NebOWnGIE4Ns4qfP/wpc8//uJ0v11dx3VHjmRqFBc+zH/DtPbjx/bWU1LTy0BnTohbO4F+ZMw/CtTlcPPbH6Dfs4D+3rKbFyuVvFDMiL41bT4g8hM67L1/n6qwobeCuzzZwxMRCzt1PzTPsr+zrW8t28l7xLi4/dExYVZv8EagS472fb2RFaSN3njw54hw5T/zdFy73JqSxw86jZ82IKEeuh/lVyKpnv99GRVMnt50wKSrFB4zDOUcXpLO6vLnrPbNSaqRFLXxR4COs1+WSXDWvmE67i4cVRIyYm3NvD1ZZfTv/994aZhX1i6hAgzf+8pa+XFfFSz/t4MIDhod0Jl0wfHmwpJT8+73V1LRYeeiMaWEXCfLG09jiSYfNyV9fX05GckJEBUf89uOl/CzaWscT35Vwxj5DIs4p9cTfsQNPLShhYUkdNx83IepiPUIIn4dnq/TEgf9rU97YwT/fXsmUwVlcc0T0OUT5GUm0dO5ZQt3TExfK2V1B+0nfU/k1C5uU1bfz0JnTI8oj3K0PP/dZdUsn175jeC//oWh/GgqhrM43SildUkqHlPIlKeXDwLWxHtje5qGvNtPcYeeW4ydG/WCYTHZb0FeXNwGGwnPJK90lSIOd5h0qw/IMb1tJTetu79/y4VpWlzdx36lTlWzMwHfJXavDyV9fX4EQ8MiZ0YVKeeIr+bKmxcrlbxp5V7edMElJP+C7IMTKskbu/NRIiP5TlJZik66wMy/B+c6ynby9bCd/+93osI8E8IdpNfTOA7z3i40s3dHAHSdNDru6lT98CQNzA9XcYeexP86IejNgUuDjXJ2mDjt/m7uC/lnJ3H3yVGWeF18W0U1VLdz4/hp+MzKXv/4usqIW3piVGL3v9683VPHUgq2cve/QiBK/feEvh+CJ70r4fnMtNx07IarQlh7kFy+r6ttsPPP9Vn4/oTDiokjeTB+aTXFpQ1flrf98tI6FJZEXtfBFQUYSlV7r0NPfb+XHLcamV8U6lJ4UT2pi3G5rkNMluXreSiTwwOnTlORcmM9PRXN3+L8RfraSCQMy+WeUnjiTQvehqZ6GpPeLd/HRqgquPHxM2FX2fJGZHE9WSgLb6nZ39P7no3Vsrm7l/tOmKjH2+crDa+qwc9WbxRTlpEZUZc8Xg/qlUNHUgc3RnS6xorSB+7/YxB+mDAj7WBV/mEY+T0xP3J0nTYnaEwdQlGvs67bVdu/rHE4Xl7ujGR6OIvfSE19ezJKaVv7z0VolnjiToTmpbK/d3VP+zvLyLkPlPgrWM19h/VJKrnlrFa1WBw+fMS1qQ044hHJ1Dvfx3lGqB9KTbK1p5eWftnP6PkMYP0DdxmLakGwS4y18ua4Km8MI81le2sADp01TsjiajMhLJ94i2FTV0vXevKVlzF1cxl9+OzKsQ0iDYSqFZR4hJf/9ZAOry5u459SpYZ3hFYzheek0ddi7lBGnS3LFmyto6TSSR1V4/0wG90tla21blzBrardz2evLKchI5p5TpigNlRrk7stkc1ULN7y3hjnDc7j80OjyrjwpykklKd7Chspu6/RX66t46rutnDVnqNLypEPdIbVbPYTBo99s4fvNtdx83ESlVehM4bXLXaFTSsk/315JZVMnj5w5PeKkYn99VTVbu/IbO2xOLnttOelJ8Tx4+rSowzg9GZGfxubq7me4vLGDq+YZm7Yb/qBmAwJGMnhOWuJugvvnrXXcP38Tx0wZwFlhnnHTi/jFy6onvt1Cm82h1Ap78Jh8mjsdfLG2kgfmb+Lln3ZwycEjIi5q4YsxhRmU1LR2WcmXlzZw7+cbOXpyf2WbXtjzXK+nF2xl8fZ6bjlOTdg/0LWWbagwnlUz/EyVJ87E9JQ1ths5OOWNHfzf+2uYWdSPSyOsGOeNEIKxhRlsrOxedz5eVcHcxaVccvAIDooiJ86TQrexb5dHtcob319DVYuVB8+Yrsz4Nq5/Bnan7DI2N3UY4WeFmcncoTDkuX9WMjsbu/dAP5UYnrjTZ6nxxAH0z0wmIzmejR77uoe+2szSHQ3cfqKaaAaAwf2MQjdb3HNmdRh5hMkJcVHnEXoypr+xBpjKb0lNKze+b+x7VBkqwVgDPO+zl3/awXebavjX0eOjTicJF78KlhDiL0KI1cBY9yGL5msbsGrvDTH2PP5tCUnxFq48PLLqNf7ISE7g6En9mbukjGMe+Z7566q46ZgJHBVFUqovEuMtjMxPZ9VOw1O2vLSBG94zLOxXK/5OkwdlIYTRBxiLsXmeQLhnMARjitt6utL9vR6Yv4kft9Txn+OjL5TgzdQhWdS2Wilv7HCXCy2mqrmTR8+K3m3tzbQhWawsa8TlkrRZHfzlteWkJcXzyJnR5115Eh9nYVz/jC4P6vbaNq54s5iJAzO5UZHF0GR0QTopCXGsKG0E4IfNtTzgLpRwhuJCCZMGGRucFe578IUft/P52iquO2oc06PMr/Bm8qAsbA4X6yqa3eegrWFLTSsPnD4tqsRif31tqGih0+7E6jDCe51OqSyM05Opg7MoLmsEjPCJv81dQVFOatgHO/YGfi2yqqnDzquLSjlx+iDGKNwoHDq+kBF5afzlteU89NVmTpk5mGsVhB55MmVwNg6XZE15E/VtNv72+goGZCfz35PUGq9GF6RTXNaIlJKl2+u5f76hxJ00Q50xaWR+Gknxlq7n5+GvNrOwpI5bjpuo9Kw4s61V5U1YHU7+9vpyXC7JA6epNeyMG5DB+opmrA4nJTWtXPvOKqYPzY649L8vMpITKMpN7do3zFtSxvvFu7ji0NFRFc/wZoLbQL56Z1OX4a2i0aiAGG3+tCfTh2RTVt9BdXOn++wmNTlxngghGN8/s2tf983Gah79ZgunzBwc0Zl3/pgyOBuLoEt23/npBtbuaubuk6coi7ICQ/l1uCQbKptptzn4y6vLSIq38OAZau/nyYOzWF7agJTGenPHJ+v57dh8ZWkD4RDIbPA6xhki/wWu83i/RUpZH9NR7WVuOW4ip84cHNZJ66FywzETqGuzUdNi5bGzZkRc5jIYvx2Xz3Pfb+PDlbu45cO19M9M5tEIz18IREZyApMGZvHZmkqmDsnmqnnFTB+azbVHqj9PYPKgLNKT4vl41S52NXZ0nTWk0uJpMme4kUfzfvEuKpo6+HJ9NTcfO0H5ht3sa+7iMj5fW8mrP+9ga00rr144R/mGHWDfkbk89/02lu2o5x9vrSLOInjy7MjOmQlEfJyFWcP6MX9dFUdO6s9fXlvG6IJ07ojBhn1kfjr5GUl8uqaSpPg4bvt4HYdPKOTCA9SEMngyZ3gOQsDHqyv4fG0lby/byd9/N4oDR6s9ew9g3xG5PP5tCe8Xl/PNhhpWljXy5NkzoqoS5485I3K589MNLCyp5baP1tPcaeflC2dHVV2tB/lVyKqslAT+9/+iL7TjTUKchVcvmsMbi0sZ2z+Toyf3V/7M7jcyl6R4Cw99tZm6Vhu1rVbmXbKf8u9y0Jh8vlhXxTPfb+XJ77YyuF8q/z1RrRIXH2fhgFF5fLK6gvyMJB76ajMnzxispICPJ3OGG3P26qIdzP25lOWljTx21gyG5qqLEgE4ZGwBL/+0g8e/KeHdFeUkxlsiOrQ4GPuPyuO9FeW88OM27vhkPQeMyuMvCnLiPBmZn86g7BTmLill5c5GPl9bxQ1/GM/MIrVy3Dy64vFvS1i2o4GGdhtvX/obZZ44k9+Oy+fuzzby4o/buO+LTYwtzODW49WlRoARWjttSDYfFJcjpeSFH40y9iojnwAOHJ1PnEXw3A/baGi3s7m6lZf/NJsBWeGfRRaIA0bl8b/l5TzxXQkvLdxOXnoS95yiLm0gHIS/cwmEEAEDInuT4Jo1a5ZcunRpTw+jRymrb+eIBxfQbnMyMCuZVy6aoyy/xpt3V+zkyjdXAjCmMJ03/rxfVOWwA3HbR+t49odtABw6roAnzp6pJO7YF2c9s4iFJXUAXHLwCK47clxMHspOu5ND7v2WiqZOLALuOWWq0nAcT7bVtnHkgwuwOlykJ8Xz4gX7KMvd8ObrDVX86UXjORzcL4U3L9mPQREc5BgKj32zhXs+3wjA7GE5vPSn2UqKuPjisteX8/GqCgBOmzWYO0+KrlS/P5wuyREPLmBLtRGq8X/HTIiJ0ghGvP3v7v2WFquDxHgLz5w7K6oS2bFACLFMShm0zLqWVX2D++dv4uGvNpORFM/DZ02PuvqZL9qsDg6//zt2NXUyKDuFVy+aExMDxaKtdZz1zCJc0pBLj589Iya5HXd9toEnvi0B4IY/jOeiKKv5+cLudHHCYz+ydlczWSkJvPSn2Uq9SiZbqls55pHv6bS7mDYkm5f+NFu5gg3wyk/b+b/31wLw54NGcP1RsZHjF7ywmG821pCSEMdjf5yupHKyNzUtVo54cAH1bTZG5KXx6kVzIjocORjz11Vx8cvGunT8tIHcr9hLavKvd1fz+s+lxFkEd5w4idP3UR+O3ml3csSDC9hR105BRhIvXzhbaYqCL/zJqkAK1jbA/KX3TEsppfonPUJ+zULLk5KaVlaWNXLo+MKYLFwmUko+Xl1BXauNU2YOVm618cTmcPHm0jJSE+I4YfqgmDz0Jo3tNt5YUsbYwgwOGade+Huyo66Nj1ZVcODoPKX5eL5YXtrATyV1HDd1oLI8BH/MX1fFjro2Tp05RGkulDcul+StZWW4JJw8Y3DMlG4wNm1zF5cyMDuFoyapt+57UtnUyTvLd7LPsBxmD4+NImyyvqKZrzdUc8TEwogPKo0lYShYWlb1AaQ0cmPy05NjujbUtVpZXtrIfiNzY1oJc92uZurbbPxmZG5MDC5grHPfb6mlf2ay8rB4T5o77fxUUseson7kKqga6Y9ttW1sr21j/1F5MV2zf95aR1JCXEwURZNOu5MFm2qYOCgrZoZEMI5UWb2ziQNH58fMiAiwamcjbVYn+47IiZmMczhdfL+5lqG5qTFzAAA0tNn4eVs9+43IjelaYxK2gtWX+DULLY1Go/klEqqC1ZfQskqj0Wh+WfiTVSGZd4QQxwEHuf/7rZTyI5WD02g0Go0mWrSs0mg0Gk1vIKiPVghxJ3A5sM79ulwIcUesB6bRaDQaTahoWaXRaDSa3kIoHqyjgWlSSheAEOIlYAXwr1gOTKPRaDSaMNCySqPRaDS9glCzDLM9flZztLtGo9FoNGrJ9vhZyyqNRqPR9AiheLD+C6wQQnyDUaHpIHY/a6THWbZsWa0QYkeUzeQBtSrGsxfoK2PtK+OEvjPWvjJO6Dtj7SvjhL4zVhXjDPdkSC2rehd9ZZzQd8baV8YJfWesfWWc0HfG2lfGCTGUVYHKtD8GvC6l/FEIMQDYx/2rxVLKyigH0+sQQiztKxWr+spY+8o4oe+Mta+ME/rOWPvKOKHvjHVvjlPLqt5JXxkn9J2x9pVxQt8Za18ZJ/SdsfaVcUJsxxrIg7UJuNctsOYBc6WUK2IxCI1Go9FoIkTLKo1Go9H0KvzmYEkpH5JS7gccDNQBzwshNgghbhJCjNlrI9RoNBqNxg9aVmk0Go2mtxG0yIWUcoeU8i4p5XTgTOAEYH2sB9YDPN3TAwiDvjLWvjJO6Dtj7SvjhL4z1r4yTug7Y93r49SyqtfRV8YJfWesfWWc0HfG2lfGCX1nrH1lnBDDsfrNwer6gBDxwFHAGcChwLcYIRjvx2pQGo1Go9GEg5ZVGo1Go+ktBCpycTiGFfBoYDHwBvC+lLJt7w1Po9FoNBr/aFml0Wg0mt5GoBDB64GFwHgp5XFSytd/qQJLCHGkEGKjEGKLEKLXlPUVQgwRQnwjhFgnhFgrhLjc/f7NQohyIUSx+3V0T48VQAixXQix2j2mpe73coQQ84UQm93/9uvhMY71mLdiIUSzEOKK3jKnQojnhRDVQog1Hu/5nENh8LD7vl0lhJjRw+O8x537skoI8a4QItv9/jAhRIfH3D65t8YZYKx+r7cQ4nr3nG4UQhzRw+N802OM24UQxe73e2xOA6xLPXWf/ipkVW+VU9C3ZFVfkFPuMfVaWdVX5FSAsfY6WdVX5FSAsWpZ5Y2U8lf9AuKAEmAEkAisBCb09LjcYxsAzHD/nIFRLWsCcDPwj54en4/xbgfyvN67G7jO/fN1wF09PU6va1+JcYZBr5hTjLN7ZgBrgs0hhsX+U4wzf/YFfu7hcf4eiHf/fJfHOId5fq6XzKnP6+1+vlYCScBw99oQ11Pj9Pr9fcCNPT2nAdalXnef/lJevVlOBbknesW66jXWPiWnPK5/r5FVfUVOBRhrr5NVfUVO+Rur1++1rJIyeJGLXwGzgS1Syq1SShtGeMnxPTwmAKSUFVLK5e6fWzAStgf17KjC5njgJffPL2EknvcWDgVKpJTRHvypDCnlAqDe621/c3g88LI0WARkC6NUdY+MU0r5hZTS4f7vImDw3hhLMPzMqT+OB96QUlqllNuALRhrRMwJNE4hhABOA+bujbEEIsC61Ovu018QvVZOwS9CVvVmOQW9TFb1FTkFfUdW9RU5BVpWhYpWsIzJLvP4/056oWAQQgwDpgM/u9/6q9uF+XxvCGdwI4EvhBDLhBB/dr9XKKWscP9cCRT2zNB8cga7LwK9cU7B/xz25nv3TxiWIJPhQogVQojvhBAH9tSgvPB1vXvrnB4IVEkpN3u81+Nz6rUu9cX7tK/QZ+awD8iqvianoG/Iqr76/Pd2WdWX5BRoWdWFVrD6AEKIdOAd4AopZTPwBDASmAZUYLhjewMHSClnYFTyukwIcZDnL6Xhgw1ctnIvIYRIBI4D3nK/1VvndDd60xz6Qwjxb8ABvOZ+qwIYKo3y2VcBrwshMntqfG76xPX24Ex232D1+Jz6WJe66Av3qUY9fURW9Rk5BX1TVvW2OfRHH5BVvf5a+0DLKjdawYJyYIjH/we73+sVCCESMG6M16SU/wOQUlZJKZ1SShfwDHvRNRwIKWW5+99q4F2McVWZLlb3v9U9N8LdOApYLqWsgt47p278zWGvu3eFEOcDxwB/dC9cuMMY6tw/L8OIF+/RA2ADXO/eOKfxwEnAm+Z7PT2nvtYl+tB92gfp9XPYV2RVH5NT0HdkVZ96/vuCrOpLcgq0rPJGK1iwBBgthBjuthSdAXzQw2MCumJZnwPWSynv93jfMyb0RGCN99/ubYQQaUKIDPNnjCTSNRhzeZ77Y+cBveVMmt2sLL1xTj3wN4cfAOe6K9/sCzR5uL33OkKII4F/AsdJKds93s8XQsS5fx4BjAa29swou8bk73p/AJwhhEgSQgzHGOvivT0+Lw4DNkgpd5pv9OSc+luX6CP3aR+l18op6Duyqg/KKeg7sqrPPP99RVb1MTkFWlbtjuyByh697YVROWQThmb9754ej8e4DsBwXa4Cit2vo4FXgNXu9z8ABvSCsY7AqGqzElhrziOQC3wFbAa+BHJ6wVjTgDogy+O9XjGnGIK0ArBjxP9e6G8OMSrdPOa+b1cDs3p4nFsw4pfNe/VJ92dPdt8TxcBy4NheMKd+rzfwb/ecbgSO6slxut9/EbjU67M9NqcB1qVed5/+kl70UjkV5J7oFeuqxzj7jJxyj6tXyio/a2qvfP79jLXXySo/4+x1csrfWN3vv4iWVV0vvwcNazQajUaj0Wg0Go0mPHSIoEaj0Wg0Go1Go9EoQitYGo1Go9FoNBqNRqMIrWBpNBqNRqPRaDQajSK0gqXRaDQajUaj0Wg0itAKlkaj0Wg0Go1Go9EoQitYGo1Go9FoNBqNRqMIrWBpNGEihMgVQhS7X5VCiHL3z61CiMdj1OcVQohz3T//RwhxWCz68dHvMUKI/+yNvjQajUajBi2nNJqeRZ+DpdFEgRDiZqBVSnlvDPuIxzigb4aU0hGrfvz0Ldx97y89TrzXaDQaTd9AyymNZu+jPVgajSKEEL8VQnzk/vlmIcRLQojvhRA7hBAnCSHuFkKsFkJ8JoRIcH9uphDiOyHEMiHE50KIAT6a/h2w3BRaQogXhRCnuH/eLoS4RQix3N32OB/jOl8I8Z4QYr77838VQlwlhFghhFgkhMhxf+7vQoh1QohVQog3AKRhgfkWOCYGU6bRaDSavYiWUxrN3kErWBpN7BiJIXSOA14FvpFSTgY6gD+4hdcjwClSypnA88DtPtrZH1gWoJ9aKeUM4AngH34+Mwk4CdjH3Ue7lHI68BNwrvsz1wHTpZRTgEs9/nYpcGCQ76rRaDSavoeWUxpNDIjv6QFoNL9gPpVS2oUQq4E44DP3+6uBYcBYDIEy34hwIA6o8NHOAGB9gH7+5/53GYZw8sU3UsoWoEUI0QR86DGWKe6fVwGvCSHeA97z+NtqYGCA/jUajUbTN9FySqOJAVrB0mhihxVASukSQthld8KjC+PZE8BaKeV+QdrpAJKD9QM48f9MWz1+dnn83xwLwB+Ag4BjgX8LISa7wz2S3WPQaDQazS8LLac0mhigQwQ1mp5jI5AvhNgPQAiRIISY6ONz64FRsRyIEMICDJFSfgNcC2QB6e5fjwHWxLJ/jUaj0fRKtJzSaCJAK1gaTQ8hpbQBpwB3CSFWAsXAb3x89FMMi10siQNedYeJrAAellI2un93CPBxjPvXaDQaTS9DyymNJjJ0mXaNpg8ghHgX+KeUcvNe7rcQeF1Keeje7Fej0Wg0fQstpzSabrSCpdH0AYQQY4FCKeWCvdzvPoBdSlm8N/vVaDQaTd9CyymNphutYGk0Go1Go9FoNBqNInQOlkaj0Wg0Go1Go9EoQitYGo1Go9FoNBqNRqMIrWBpNBqNRqPRaDQajSK0gqXRaDQajUaj0Wg0itAKlkaj0Wg0Go1Go9EoQitYGo1Go9FoNBqNRqMIrWBpNBqNRqPRaDQajSK0gqXRaDQajUaj0Wg0itAKlkaj0Wg0Go1Go9EoQitYml8cQohPhRDn9fAYhgkhpBAivifHodFoNJreiZZVGs0vF61gafoEQojtQojDQvmslPIoKeVLUfZ3sxDi1WjaCKGPs4QQS4UQrUKICrewPSCWfYaKEOJ8IcQPMWz/DCHEeiFEmxCiRAhxYIDPXimEqBRCNAshnhdCJMVqXBqNRhMNWlbtXXqLrHKPw+meI/P121iNS9P70QqWRtMDCCGuAh4E7gAKgaHA48DxEbS1h+WxN1sjhRCHA3cBFwAZwEHAVj+fPQK4DjgUKAJGALfsnZFqNBrNrxstq0KTVW5+klKme7y+3QvD1PRWpJT6pV+9/gVsBw5z/3w+8ANwL9AAbAOO8vjst8BFHv//E7De/dnPgSKP300E5gP1QBXwL+BIwAbYgVZgpfuzWcBzQAVQDtwGxLl/F+ceTy3GAnwZIIF4H98ly93uqQG+74vAbR7//y2w02s+rgVWAVZglLu/C4FSYEEI310ClwKbgUbgMUAA44FOwOkeZ6Pia7kQuDDEz74O3OHx/0OByp6+H/VLv/RLv3y9tKz61cqq84Efevr+06/e89IeLE1fZQ6wEcgD7gaeE0II7w8JIY7HEEQnAfnA98Bc9+8ygC+Bz4CBGAv/V1LKzzCsdW9Kwwo11d3ci4DD/bnpwO+Bi9y/uxg4xv3+LOCUAGPfD0gG3o3ge3tyJvAHINs9LoCDMYTOEYG+uwfHAPsAU4DTgCOklOsxhJlpjcv21bkQ4nEhRKOf1yo/fxOHMT/5QogtQoidQohHhRApfr7jRGClx/9XAoVCiFx/k6LRaDS9CC2rfh2yCmC6EKJWCLFJCPF/vdk7p4k9WsHS9FV2SCmfkVI6gZeAARjhC95cCvxXSrleSunAEEbThBBFGAt2pZTyPillp5SyRUr5s6/OhBCFwNHAFVLKNillNfAAcIb7I6cBD0opy6SU9cB/A4w9F6h1jycaHnb31+Hx3s3u8XUQ+Lub3CmlbJRSlgLfANNC7VxK+f+klNl+XlP8/FkhkIAh1A909zcduMHP59OBJo//mz9nhDpOjUaj6UG0rPp1yKoFwCSgADgZQ6m8JtQxan55aAVL01epNH+QUra7f0z38bki4CHTWoURXiGAQcAQoCTE/oowFtsKj7aewlhMwbAqlnl8fkeAtuqAPAXWrbIg7wX67iaVHj+343sOVWIK2EeklBVSylrgfowNgS9agUyP/5s/t8RofBqNRqMSLat+BbJKSrlVSrlNSumSUq4G/kNg76DmF45WsDS/dMqAS7wsVilSyoXu343w83fSRztWIM+jnUwp5UT37yswhKDJ0ABj+snd1gkBPtMGpHr8v38IY/R+L9B3D4avtndDCPGkV8Ukz9dan41K2QDs9Go/UF9rgake/58KVEkp60L4DhqNRtNX0LKqb8sqX+PaIxRU8+tBK1iaXzpPAtcLISYCCCGyhBCnun/3ETBACHGFECJJCJEhhJjj/l0VMEwIYQGQUlYAXwD3CSEyhRAWIcRIIcTB7s/PA/4uhBgshOiHUfnOJ1LKJuBG4DEhxAlCiFQhRIIQ4ighxN3ujxUDRwshcoQQ/YErFH/3YFQBg4UQiQG+x6Vy94pJnq+J/v4OeAH4mxCiwD1XV2JcC1+8DFwohJgghMjGCM94McTvoNFoNH0FLav6sKxyz0mh++dxwP8B74f4HTS/QLSCpflFI6V8F6PM6htCiGZgDXCU+3ctwOHAsRjhB5uBQ9x/+pb73zohxHL3z+cCicA6jEpHb2PE0wM8g1H5aCWwHPhfkHHdB1yFoTDUYFjw/gq85/7IK+62tmMIyzfD/OoBv3sIfI3hPaoUQtSG23cQbgWWAJswqkatAG4HEEIMdVsVhwJII4n7boyY+1KMcJabFI9Ho9FoehQtq/q2rMKocLtKCNEGfIIxr3coHo+mDyGkDMfjqdH0foQQC4BnpZQv9/RYNBqNRqPxhZZVGs0vl6CJi0KIAmB/jMTIDgzLwlIppSvGY9NowkYIkYoRq76tp8ei0Wj2HlpWafoSWlZpNL9s/HqwhBCHYMTm5mC4RasxzkMYA4zEcDnfJ6Vs3jtD1WgC495gbQE+BM6W2j2r0fzi0bJK09fQskqj+eUTSMG6B6M8ZamP38VjnMsQJ6V8J7ZD1Gg0Go3GN1pWaTQajaa3EUjB6i+lrPT5S41Go9FoegFaVmk0Go2mtxFIwarEiGGfC7wjpWzci+MKi7y8PDls2LCeHoZGo9FoFLFs2bJaKWV+sM9pWaXRaDSansKfrApU5GIQcBhwBnCHEGIRhgB7X0rZEeDvQkYIsR1oAZyAQ0o5SwiRg1HmcxhG2c/T3Ae++WXYsGEsXbpUxZA0Go1G0wsQQuwI8aNaVmk0Go2mR/Anq/yegyWldEopP5dSXoBx6vfzwPHANiHEawrHdoiUcpqUcpb7/9cBX0kpRwNfEeAQPI1Go9H8utGySqPRaDS9jZAOGpZS2jAOrFsPNAPjYzim44GX3D+/BJwQw740Go1mr6ILhsUOLas0Go1G0xsIqGAJIYYIIa5xnw7+kfvzx0kpZyjqXwJfCCGWCSH+7H6vUEpZ4f65EihU1Jcy/vPhOva/82veLy6PSfvPfr+VGbfO56nvSmLSvtMlOfS+bzn4nm/4qaQuJn1sqW5l8s2fc8oTCylvVBKlswfvF5cz+ebP+cdbK7E6nDHp47aP1jH1li94ZsHWmLTvcklOfPxH9r/za77bVBOTPsrq25lzx5ec8NiPbK9ti0kf89dVMfWWL/jb3BW02xwx6eO+LzYy+ebPefirzTFTUs5+9mf2veMrvlgbm5oJ1S2d7HP7lxzzyPdsrmqJSR8/bK5lys2f8+eXl9LcaY9JH098W8Lkmz/nrs829AqFUcuqPfnn2yv57T3fxGRd+XR1BbNum8+DX26KyfX/76frmXnrfF5ZFGqUaHj8+93VzLptPm8tLYtJ+5e+sox9bv+SD1fuikn7f355Kfve8RVfrquKSfsnP7GQ/e/8mu83q793TJn323u+YfG2euXtO5wuDrn3W35337esLGtU3n6n3cnv7vuWIx9cwPoK9Sc/NHXY2f/Orznu0R8oqWlV3n5tq5U5d3zJyU8spKy+XXn7OxvamXXbfM54+icqmzqVt7+tto1p//mCc577mdpWq/L2VeJXwRJCLAR+AAqAi6WUY6WUN0spNyjs/wC3ADwKuEwIcZDnL91nQ/hcvYUQfxZCLBVCLK2pic3G1BdSSt5aWkZ5YwdXz1vJphhskuavq6K+zcZ/P93AJ6srgv9BmOyoa6Okpo0dde38+eWlVDWrfwh21LXR0ulg6Y4G/vLqMlwu9UJ4yfZ6WjodvL1sJ3d+qvK27Oa7TTU0ddi5/ZP1fBqDa9Fmc7CitJHyxg4ueWVpTBa8jZUtVDVbKS5r5KKXl+Jwqj93dcn2epo67Hy8ahc3f7BWefsAC0vqaOl0cP/8Tby9bKfy9p0uyQ9baqls7uSy15ezpVr9s72pspXaVhtrypu54MUldNrVGwaKyxpo7nTwxboqrv/fauXtAywsqaWl08ET35bw8k+x2QSHipZVe9Jhc/LWsp1sr2vnsteWU614jZ+/voraVhsPfrmZt2LwLH63sYa6Nhv/994aFsRAQQcqVQkAAQAASURBVPxpax21rTb++c4qlm5Xv8lfubORmhYrV75ZzNpdTcrb/9G9Tv2/15fHZBO+vLTBLZOWKTeQWh0uVpQ2sr2unYteWqJ8k9xmdbKtto2tNW1c+NJSmjrUGpkqmzrZWtPGhsoWLnxxCR02tWt4aV075Y0drNrZxMUvLcWuWF6XVLdS1Wxl2Y4G/vzKMpyK92YbKlqobbWxaGs9l72+XLkBZk15E43tdr7fXMtV81YqbVs1gTxY1wHDpJTXSCmXxaJzKWW5+99q4F1gNlAlhBgA4P632s/fPi2lnCWlnJWfH7TQlDJsThctVgcXHTCc+DjBCz+qP4S90+Fi/1G5jClMj4m13uowHtjrjhpHm83B8zH4DjZ3HxcfOJxVO5v4ZqPPyxgVdoekMDOJM2cP4dVFO6iLgTXD4ZL8YcoAxhZm8NBXm5W3b3ca1/bSg0ciJTy1QL3X0lygrzp8DFuqW/k4BoqizeEiIzmeCw8YzlvLdrKzQb2iaHe6OHhMPtOGZPPw1+qfC3OeLj5wOEnxcTz+TeyuxTVHjGVnQwfvrlDvBbe576nLDx3Nx6sqYuIpsztdzB6Ww/6jcnnk6y0xUdrDQMsqL1qtDqSEP+0/nFargzeWqPXUWO0uRuSlMW1INo9+vUW5Ac3hkhw2vpChOakxWXcdTskREwvJTUvi4a+3KG/f7jTkRkpibNYRh0ty8ozBWAQ8+a3a9l0uiZRw2qzB2J0u5dEbNvda8cc5Q2m1Onjxx+1K27c6DYXn9FlDqG218vrPexyPFxXmGn7OvkXsaurkrWVqny1zfs7dr4ittW18UKzWC2ruOc7Zt4j1Fc3MV+wFNefnvP2KWLajgR+21Mak/XP3K2LBphqWlwasK9SjBCpysUBKKYUQw4UQ9wsh/ieE+MB8RduxECJNCJFh/gz8HqPU7gfAee6PnQe8H21fKjEVh/5ZyRw+oT/z11UrFy52h4uUhDjO2W8YGypb2Kh4g2TeoKML0vnduELeX7FL+WbVXCROmTmEnLTEmIRK2J0uEuIsnPebYdidMibePrvTRXJ8HGfvO5QNlS1sqFQbEmBeiyE5Kfx+Yn8+XlWh3GJld9+fR03qz8CsZN5XvGADOFwuEuMsnLvfMKSED1fGRolLjLdw7n5FlNV3KF9YzXu2MDOZY6cO4LO1lcqtk2YfB4/JZ1RBekwULLvTuBZn71uERRCT6213ShLiBefuN4zaVis/xijUOBS0rNoT0zM6YWAm+wzrp3wTZXN2P4ul9e2sKFP7LNqdLtKS4jhz9lCW7WhQ7tm3O11kpSRwxj5D+GFzDfVtNqXt2xxO8tOTOHnGYOavr6LNqjZs2u50MTA7mWOnDOSzNZVd+xIVmGvUsLw0fj+hPx+tqlC6xzHl27gBmRw4Op8PVqrdf5gKxMyifswq6scHivce5vwcMDqPcf0zlO9tzPk5cmJ/huakKh+/2f4J0weRl57Eh6tiMz9nzB5KRlJ8zObn3P2GkRhviVkYrgpCKXLxHkYJ2keA+zxe0VII/CCEWAksBj6WUn4G3AkcLoTYjFF6904FfSnDXMgS4y0cNDqP2lYrmxSHEpmKw6HjCgAjp0Jt+8YCFB9n4fAJBVQ2d8ZAiTP6SE2M43fjCvh6QwwUUZckMc7CuP6ZFOWmskDxPIF7sxovOGJifwDl4Srm/ZQQZ+HIif1paLezulxtSInd3UdSfBy/n9ifhSW1SgWy0YckIc7CkJxUJgzIjElYj6k4HDahEIuA7zapvd4O9z2bEGfhiIn9abc5WbZD7cbR7CMx3sLvJxSyfEeD+s2Xw0V8nCA/I4lZRTksiEEehcO9Rh08Jp+keEtMrncEvIeWVQC0uw0DKQlx7D8qjzW7mmhsV6dEmNf/d+MKEAJ+2KxWwbY7XO7n0EhrU30PmzL29xMLcUn4bpPaCAu7U5IQJ/j9xEJsDhc/KrTiO10Sl+xep1qsDpYoDHM0N7CJ7vmpbbWySqFM6tpDueentL5daZhjl0yNFxw+oZD1Fc3sUhjmaO5tEt3zv3RHg9Jnq2v+3TJiYUmt0lByUwFKTrBw+IRCvt1QrTQCwZyf9KR4DnHv/VQq0GaERnZqAgeOyuPrDeqjo1QRioLVKaV8WEr5jZTyO/MVbcdSyq1Syqnu10Qp5e3u9+uklIdKKUdLKQ+TUqoPkI4Cq6N78ZlR1A+A1TvVbogdLmOzOjA7hRF5acoLUZgPcEKc4IDRRsiK6mRTT8VhvxG5NHc62KI4VtwUwgBzhuewZHu9eiXOKYm3WCjITGZ4XpryefIUZrOH5wCwJEZ9xMcJ5gzPodPuUq/EOY1NPcCcETksL21QrsQZz4UgMzmBCQMzWbwtVs+FhZlF/bAIYtZHvEWw38hcHC6pdHNk9tH1XIzIYe2uZloVK3E2p7FGJSfEMW1IdkyS1SNAyyo3He4NWUqihVlFOUgJa8rVed9NBSI7NZFJA7P4aatiI6BbBg7PSyM/I0n5mmh1y46JA7NIT4pXbkixuz18M4v6kRhnYZlCb7unbN3HLTNUjt/uYQTad0QuAMuVtt89/jnDjfbVjt+UqXH8ZmSe8vY953/OCOPZWqGwmMZu8zMiF7tTKpXXnnuOfUfk0GZzKjWw7z7+HGpbbZQq9EB7z/+OuvZeW+wiFAXrISHETUKI/YQQM8xXzEfWSzEvblKCheG5aaQlxrF2l9qwMZuje7M6dUg2axQnyXo+AAOzkslNS1SuJHoqcdOHZgOwQnFIl+emfp9hOTS229mquEqepxK3z7B+LNvRoNQa43B1e03yM5IYnpcWE2Fv9jFrmCGQlV8LtzcRYPawHKwOF+sUV1jyvBazinJYUdqoNEHXfLbj4wQZbiVO5cYIuq2HCXEWZgzthxCwSvWz596cAswaloPTJVmluJqWocQZz97s4Tms3dWkPJwyArSscmNei+SEOMYPyABQGt5s81Dipw3JZm15s+IwLxeJcQIhhLHuxkB2JMZbiLMIpg7JYvmORmVtu1yyy0iaFB/H+IGZrChV177NQ7ZmpSQwuiBdabi05wa2MDOZgVnJMVMgRuSlkZWSoHT+u8cvGDcgg6R4i9Jqgp57m6mDs4mzCKUKqM3RvSeY4d47Ld0em+s7Y6jhJFiu8P70nB+z/dgo0B7jV7xnUkUoCtZk4GKM8Acz5OLeWA6qN2PzsI5YLILxAzLVbyTdoVAAEwdmUtVspaZFnYbuGQolhGDy4KyYeDTAsIINz0sjMzle+UbSU8hPGJgJqN1EANhdLhLijY3khAGZNLTblV4LT2Fg9rGhMjbhmoluJS4/I4n1FYr78FB+xg8wrsVGxdfC5pQkxHdfb6vDxfY6dQq158IN7muheJ48QwTTkuIpyklVXurX7jA2p2B8B4D1yu8pj2dvQCYuCZtjUHUxTLSscmOGFKUkxJGbbjzzKuWUw2vtbbE6KKtXGIbl2P3+KqvvUOqFtTu7DUJTB2ezsapFmcfd04gCMG1wFmvKm5RFV5jrVJJ7LZw6JFuxd9Jr/EOzWbWzUVn7pgKRGG/BYhFMGZyl1IjcNf/xFhLiLEwalMVKleP3aD8tKZ7RBemsiYWHKV6Qm57EkJwUpZUo7R7jH9wvhZy0RNbGIAQ0Id7CmMIMkhMsSp0Qdo8906RBWVgESudfJaEoWKcCI6SUB0spD3G/fhfrgfVWrPbdF7cR+WlsU+018RBeEwdmASh9wDwtYACTBmaxubo1JomyphI3pjCDLdVqQwQdHkJyVEE6cRbBxhgoJwkWo49xMdisei52AGP7Z1Ba3640L6e7D+N6j+ufwcYq9UYB05s4NCeVlIQ49Uqc00WCxehjfH9TiVPXh6c3EWBc/0zq2mxKFWrPEEEwlFHlCpbT1XU/5WckkZeeqFzZdTi7vWRj+5sekh5XsLSscmOeC5gUHwfAWMXrrxkiCN1KvNpNoPRYE9U+606XxOnh5R1TmIHTJZXJcW9Dzdj+mbTbnOxqUqOAeitAYwrTqW210qCoUIf3/mB0gSGTVOUB2bznx31vqopG6Ioy8lifNlW1KvOw2h27j39MYQablT5bXte3QO2za/MwuAohGF2Qrnj83e3HWQSjCtKVHmdkd7oQAuIsguSEOIpy05SOXyWhKFhrgOwYj6PPYHOXAE10L/7D8tKoabEqta55bl5GF6YDsLVGvaXe7GNkQRpOl6S0Xl0fNq9FaHRhunIFy9hIGkIgKT6OEXlpSjf13oJ4nLmRVLgh9lyMoHuzqnpBAoi3dHuYNlW1Kk1s9fQmWiyCsf0zYlJx0fO5sAi1m3pvb6J5vVUqcd4K9fgBmWyva1d6OLPdY/0A455SbXjwvN5FuWkkJ1iU9xEBWla5sXdFKRj3clFuKjvq1OVBeD6LYwqN50TVJkdKudv91bXuKlpPvA1OpoxV5YH1zGHavX0182N37G4IGu2ef1U5zt4estGF6Uipbg/ivf8YXZiO1eFSdrSH9xo7Kj+dpg47dYoU0D2ub0E6Oxs6lBlFPUP4AEYVprO1pk2ZvPalIG6qalGngO4FBdFUDsGY/1icR6uCUBSsbGCDEOJzlaVv+ypdRS7cD9fw3DQAtiv0Ytk8FIfctEQyk+OVesk8QwQBRuYbAmBLtVolLt4isLgt9aMKMqhrsyk9q8pTyANuL1ksNsPGd8hOTSQ/Iykm1irTozHW3KxUqbdYdVsk07E5XJQ1qAvp8fQmgmFVjYXH0hSaXZarWCTnuvsYExNl130tLN0ecIDttQqTgH08FyotuNCdIwPExEoZIdloWQUYxyaAUSkWDAWrqcNOU7uaQ1c9196UxDgGZCUrk4FdnmT3mji4XwqpiXHK1kRvD8rIfMNYs0lR+94bzFFu+VqiaD00jbxd61Sh2nXKe4M/usBUoBUpoF6GrNFd41c7/57RLYAyeeRLQQSUVUL0paDYnC62KzKQ+DIwtHQ6qFYUqWFzuLC4PUxgKIgVTZ00d6pZe2wO1257jdGF6Wyva1deVEsFoShYNwEnAnegtvRtn8RUsJI8PFiA8lwQcwMmhGB4fjpba1VuuHff1A93fweVfXhb0UcXqLXigaE4mF4ZgGF5qexs6FB2jlS3oO/uY3huGqUKLcE2r0394H4pxFuE0vvJ4S5IYFp8zOu9Q/U9616wwfBq1LbalHl2va3aAMNyU5UJHdhT+clNSyQjKV5pBSTPBGCAYbkxWj/iuq/F8Lw0OuxOtaGODlfX5h2M76FyniJEyyo33V4OM2zX/cwrilLwDBEE4x5TVWDI29AhhKAoN03ZemX3UiCSE+IYmpOqzDjn7Qnvl5ZIXnqiQgXIjHow2h+YlUyaQgXUe4M/LC+VOItQruB2eZgK1HoQ9/AAKVawvK/vqAK1RlGbV1SLqcDFSkHsmn+F989uBj73/Kgcv3nvQHeIr0oZqoqgCpZnuVuVpW/7Kt4Pb1FuKqDOg+V5xoXJiLw0tikMEXR4ubgzkhMozEyiRKEHy+bYc5MHajf1DvcZVSZFuWk4XFLZmRfeljajj1S1m2Evd318nJF4GqtwHjDmCdR6XQ2P5e4bblB3vU1lNzFu9+u9o64tBqENRh9CCIry1F5vh0f8OHQbaFR6qP1eb8XKaIKXgqXSuBEJWlZ1Y3f5llOq1hWHt7EjL03Zc+IdAgeGMWWHIgXeO8QLzLVETftdHrJ4TxmertwDkeihgA5VaOCwec1/Unwcg/ulsE3V9fVSIDKTE8hNS1RmuLR5Xd8BWcmkJsYp8zB5e0CH5qQiBArvz92vr7l+q0rh6KqW62VgV2V8sTl39zANyzPWHlWHhXsbEIu69ho9buDbg1A8WBoPvJWT1MR4CjKSlC1u3u5bMBSsXU2dysoge1swjD7Ue8kS3QnWYCxy8Rah3BvgvckDdRtJb0sqGBuJ6harspwZ78IK4Bb2CvPhjLO8uu+nvPRE0hLjYrvhzlO7oes+y2v3TVe7zUltq6rY+j2vt8qNF7grIVq648fTk+LJz0hSrOzu7l0YZhqBFG2QpJTYXS4vZTcVp0tSrjDsVBM5ppwyn3tTwVK2CXfK3Z7F4blpNLbblRRaMJVDb2NKWX27kkIIvuRfUW4qpXXtSow13iFqAEPd7avA5/hzUpUZs3wpiENzUpVtkG0OH+3npipUEHeff9MDqnr+zfEnxlsYmJVCqXIPq3H/Z6UkkJWSoNAAsHsOU2FGMonxFqXz43ltB/dTuxfwjmQpyjHb74MeLM3u+FrchuaoSyD2tTgPU2xh8Dx41qQoV90CCruXijb6sjBIuWfG24qu9kHzLrcL6i3B3l4TcFtra9UIe7MPzwVPdchNdx97WpViadUuUuwV9basgnEtyurblSUYO7ysb2BsTtWHCHZ/h4HZKcRZhLJ5crok0svLHotQaU3keBsLUhPjyUtPUmpFTvQRoaDCy+FLxg7LTcXuVBOd4F0lDwwZ3mJ10KggR83XWjU0J5XK5k4llfj8yaWyhg4lpeC9oyogNnucPRXE2ChAZvvKZJG/PaDCZ8szygHcBgCVz67H3FgsgiEK92Z2x+77suSEOPpnJiu8vrvne2enJigP5VeFVrDCxLsoAai1vti9LI9gPLyAsnNGvHNNwPgOKnNmbF5xsmB8D6UnenttVvMzkkhNjFNWMMDhVRwCPLxkijwO3iGnYCgnLVYH9cqqHu2+4QbDw6Q6DNEzRDA9ydjQ7VB0LXxZtWPlsdzN8JBjhp12Kusj3se12KawyIXnOXpg3Fsqw0671qgYGh400eFzjc9JUbb++goRBDXGDp/GFIVhQN4eDuiWsSo2yd5FKKD7+VBRKc+XzBiSk4rN4aKqJfp1ylcUjcoiKT4V3Nw0Kpo6lBQq8M6RAijKS6WsvkORB9TX/anQw+c2HJseJlC7d/IOsQMzakZh+/G7t2/skVXtmZx7GIxV7sFVElTBEkLsL4SYL4TYJITYKoTYJoTYujcG1xvxGb+dk6bMOuUrFMpc/FXdQE73ZjXOpxKn0sK5p4IVy9wi5cnQvixVXeFWscsHMMPrVPYR72NBLWtQ55nx9iaCWYQidtdikNszoyw0I4DHUtX3sPmap7w0alvVHfXgbUGE2OSY7GbcSHcbN3rQg6VlVTcOH8YCtZu03UMEh+SkIISaapjeRRDAc02MjYesSGHOqM2xp2FuSI46A4QvT7tKA4cvD5nKPYjPEMqcVFwSyhV4KH2GeuekYXO6qGyOXgH1pcANyVFnoPa1dyrKTaW8oUOJvPZlcDVDQFVEzXiH8IFqD6Uv+aYuBFcloXiwngPuBw4A9gFmuf/9VdJV/nY3D1YKUsJOBfkHvkLGslMTSE+KV6j87CkAinLUJgrafG7y1JYKdvjZ1KtKxvUlaMyEXFUeLF8eUZXCHnwveN0hN+o8M4nxeypxsQwRTIy3MCg7hW2qld0Yhr45vEKrQP1RD95VlsCt7NaqKQhiCnlfYacqc8kiQMsqNz4jLXJS2dUYfSGS7oqe3W0nxccxMCtFjQerawPe3X5hRjJJ8RYl95evDXiXAqFEAdq90jB054koVVC8FAhQM37fHj6z0EJsPHBFCsP7rT7GrzJ9wLz3PT1MXTmOiu6fPTxMCiMpfO3Nhuak0qooasafcb26xaqkjoCv+RmaYxiMVR1WrYpQFKwmKeWnUspqKWWd+Yr5yHopXRVYfC4+0T+83cnJu29ehii0PjpcLuIsYg8XNKjzYPkLEQSVidY+LCW5aexUHgrgrTikKs+HS9gtKTQFi1DnwXL4tIipz+vzvGfBEGpVzWoW1a6jBXxci1h6sAoykkhJiFOaH+AdIqi6CpLN6eo6Q8izjxargwYVOSY+QmRAbaW3CNGyyo3dJffYBA5xewmizWNyuvY0RIDhZVKxZnkfjA5GnkiRovuru8x5d/spiXHkKypW5WsdyUkzCgup8WDtaYQdkJ1sePOVjH/PqAozckOFvPCXIwUx9JAp9PDZHb48NOr2gDYf7Xd5QFW075WDBR4KrqL7Zw8FTmGRHV/zMzTHMBir8FCqJBQF6xshxD1CiP2EEDPMV6wHJoQ4UgixUQixRQhxXaz7CxWHD+Gi0j3ffUCkt4aeokz5cbh2ryoHkJXqrlSjasPt2NNSr/IsFimlT0vGsNxUbE6XkmRoX4ISDK+G6nwWz/spKT6OgdlqrMFmH3tuhlXnL/kOfYPYCU0wvsc2RZ4ZXxsXwzOjrkKXd4U/UB+G6DPnTmEf/p4LlZXeImSvy6peK6d8GDxUGbh85eCB8Swqvb/22ASqCf/u3uB7ewlUKXB7Ph9mKXUVMtxX+wlxhjdfzQZ5z/bTk+LJTUtUMn5fBpr8jCSSE9RUsrM5XMRbBBaPPc6ArBQS4yzK7k9vBUWpAuHTcKxQAXX4ysGKsQcuV+1ewK+C2MuKLIWiYM3BCLXwPLzx3lgOSggRBzwGHAVMAM4UQkyIZZ+h4iu2PddtnVJpPfKloZcqipF1OPdUsLr7UFVII7aLkK9KZqDWG+BXwcpNo6JJbc6drz5UFm/wVtgL3AJNbViat7KrLrzO4ee5KMpNpblTTfUvX95p6FbiVOBL+Ulzl2pXdmaYU+5xLVSefeYrBwtgeJ66Sm8RsldlVW+WU77yLoeoUrBcvq//MHep9sb26MKMfOUwGe0beRzRVsrzt+aqKqXuK7QcDCOpmiIae3qAQJ0331eOERj3j8oiI96GrKE56jyg3nMfZxEMzklRdH33NCaapdTVjF/ucW37Zxql1FXta7zbV1lK3erHw2S0rypE04/xqJflYQVVsKSUh/h4/S7G45oNbJFSbpVS2oA3gONj3GdI2LpC+HZfHIbkqFmcvc8vMRmSk4rV4aKmxaqgjz3DlMAUMLHL+zGtYCoqy/k6PwpUJ0P7DxEEddYY75KsZh/KcrB8LHgWi6AoR21BkARvi7nCQ7j9hQiqVOJ8eRNBdQWqPYUbmAVB1IUIensvhuSoCzsN5MGCnivV3gOyqtfKKV95EIWZySTGWaKuRmv34UEBdZEcge4vqyP6QgW+PEBgrCWVzdGfN2muI0k+PHBl9QoUxADzr8KbH0iBU1VEwzt8FYz5V+Oh3FNBMdtXtf55P1tgRraoqKK5Z/uGvE5VJku9753khDgGZiUr8xB7z3+/1AQyk+OVGCrtDrnH/AzMNjyUqvLvVeFXwRJCnO3+9ypfrxiPaxBQ5vH/ne73PMf3ZyHEUiHE0pqamhgPpxuHn8VBVXx4t3XQdwxumYIyr2Z8vjdDc1LZqahSja9NPRjnpah4CKx+rGxmMrSaalBmWFrcbu+rLNVu87GYgjFPKqzBEEggqNnUO5wuXHJPgZyVkkBOWqKSPnwdTglqDzT2FSIIxvW2OV1UNKkIO93T+gkoLRBhc7j22NypDDv1VXAE1IedhkoPyqqgcso9rr0uqxw+PFhxFsHgftGHmvvNwVNUEMZfOPBwRe378zCpHr8vK7sKBdFXjhQYz19zZ/R5ll3j9zLSFOWkUtHUgdURpQIaYG+wQ4EC6suDAu4InToFCqiPEDuA4bmpSqpo+oo4AeP+VKKg+FCwzPa3xqh9IQTD89SFEHuHD8dZBENyUnq6yNIeBPJgpbn/zfDz6lGklE9LKWdJKWfl5+fvtX59JfODsUEqVbA4dHmw9shfUhhe55R7eEzAWEAdLklFk4JKNQGsPKoUE9jTSmgmQ6s4V8hXMi50byRVudN9WduKFG5WfSW1gvE9Suuiz5nxZ/EEdZ44sw/v6z0kJxUhUCJ4bA4XFrFniKDqEsg+hXNeGtUtVtpt0ZX5NSu8xdKCa57z492HGXa6Y+8LOS2rvLC7fMspFcWSfJ0XB55hQNG178+Youo59FUlD2BEnhrDmb8QO2Xt+6gQCTAi333Ys4Lxx3nlMAEMz0/DJaMvhOXLgwLG3sDmcLErSkOWzUf+NxhRAm02J7Wt0RktAyko5Y0dUacO+Fu/VSmg/oy6wxQpQAHbV7Avs/pTcPPSlZ2Bqgq/CpaU8in3v7f4esV4XOXAEI//D3a/1+P4im2H7oP+qqMM4evK8fISjoOyUwAorVNgRfcjfFUqcb6s6NC9kYz2vIhAm3pVoQb+BGVWagLZqQlKPHF2p+95UlpW1s+CV5Sr5mwQu4+qXCbDFJ2/5M+bqLI8dCDFBNQpcb49WGo2jw53bqLv661G2fVVBhm6w073tgerB2VVr5VTNj+GGxVnYfnzMCUnxDEgK1mZh8l7/KoKFZjtJyf49mBFu653Gf8Sdl+rhrsVoGi9BFY/xkVV65TN4SLZp+xOB2BrTfTt+5Z5isbvdO0x9+BZaCH6+U9K8L23gejXcKvd//woUUD97DmGK8uh9K8g7mpSo4Amxe95fYfnGeduRquAqiRQiOANQoicAL//nRDimNgMiyXAaCHEcCFEInAG8EGM+goLf56ZIkVJfHaX77yf5IQ4+mcmK1F+HD4qmYHaIhT+FiH1VkI/sdCKLD0QeyXO1/1kemaUHNzpZ8HrUuKiFfhuj4a3297oQ82i6s+bCOpCHf1di/6Z6sJO/YZrKjr7zF8FNrMPVQIUYuuxDIcelFW9Vk512l2k+NhkDs2J/ixCf/mvYFz/aNd2fwq8GQYUbQ6v1e77/k1PiicvPYltUSoQZgid9ya2MCOZlIS4qBUIq8NJYrxljzSFITmpxFmEkvn3uUFWpAAFU1CiHr/d6VOB6KrWGuX9YyiIvjb4iubH6SLRR/td+eUK7n9/ChAour5+2pcy+v2lv+s7LE9NjqZKAoUIrgY+FEJ85S59+08hxI1CiFeEEKuBY4GfYzEoKaUD+CvwObAemCelXBuLvsKlw+YkJdGXdUTNOQLOrjLtvq2PKnKwzHOwvBmQlUJCnFAT+mZ3+lyEhil6iINt8mwqkqH9WGrBPLhVUciYj+9gJJ2mqHPZ+5qnPDVhiF1J3X7yvIxDuNWE9fgyDKgq3+xvY2GGncaqwhV4FASJUfgTeOaYxLYPFcaNMOkRWdWb5VSn3becUpHL211t03eoq6oiF/42gao8WIGs4NFgNUONvWSsxSKU5NH48wAlxFkY3C8lag+c1eFbdmelJpCblqhk/L7WjsLMJLcCGuUG3M/8DO6XikVEv0cz5ifQ+hqb+RmuyMPqb36Ujj+GHkq/CpzCSBNVBAoRfF9KuT9wKbAWiAOagVeB2VLKK6WUMcvYlVJ+IqUcI6UcKaW8PVb9hEuHzUmqD8E1MDvFOOhPgXsY9rR+AQxWdBZWp93lU/gaSdCpas7q8Bv6psZK5S9MZbc+FIV6+MuR2qUg4dffYmr0Eb2wB/+hbwO6Sr/Gdp6AqIVmYG9iKg3t0VnlzT78X4vYVrjKTDY2L7G8FqrCToOF56owboRDT8qqXiun7E6fHqwhOe5Q8yjWeH/FYMB4TurabDR3Rv4sBlLgi9xnbUVTqMCfBwvcRZiUbPDj9vAwgRHBEasNJrgV0Bh5mMz2ow9x9K3ACSGU5AH5az8x3qKk0I+/+TfX8Ojn3+lz/gszkklOsCjxsPqan6E5hgIaffu+PXzDFHgozRzjQApin1CwTKSUm6WUL0op/yulfFBK+bmUsscOOulp2u1OUhLj93g/Ic7CwOzoQ/ja3CVi03z0MTQnlcrmzqg39e02B6kJe7Zv9hHtQcBSSr/egJREoxyoCiED/j1YELtywdDtmYm65LEf5QfMTX3sQt/M0q/RXouA87QXNvWqyoMHuhaqzuCxOXxXiILuMstRtR/A8KAq7DRguKbC0vzhomVVNx02J8l+QgQhumfFLGOe4kOGmNc/GkNjMCNBpz26XGerw0lCnPAZxTEsL43aVistUSiIVrvvDTIYCkppfXvXMxRZ+743sOAuZBNlqXZ/OUDgVrBUbMD9zk/0a2Cg9lWUmvfnoQE1lfhsDpfPaBCLRSg5zNvf+BPjLQzql8K2GM1Pd1XhyMdvd7pzjH20b4by96ZKgkEVLM3udNgcpPoQXIBxrlCUClaHu4qYLw/T0BxjU1/eEN2eocPuItlH+2Yf0XrhzIfA3yKtYhEylUyfnhkzGTrKPjoDeBOLFOXMBLJGDstNpb7NRlNHdJ6ZQH2oUOLM/CpffWSnJroPYFSV2O3DMqZIwTJzG3wxVNEZPO02h08POKgpCNI1Tz42GMkJcQzIjP6sk0AegCJFYSya6PAXIpiRnEBBRlJUm2SzQFF60p4KlgpjR2DjWfRW8ECe6uFd63rkz2EwD5PTJaOKEvEXkWC232ZzUtManQLqT4EbkZ9Obas1Kg+lNcD8D3OfFRbNUTH+QihBTSSCPw8NqMnN9mecNttX4qGMUfuBqtga7UenQHfnN+45/6oUUJVoBStM2qxO0pL8PFx5qWyraY3KetTutg762oQNUVTlr8PmICWAhae50xFVIrxp4fRlQTX7iDYMsbXTEPKZyQl7/K7r1PYo+2jptJOSEOczH65I0bVo7nSQ4eM7QLcnLiph7HBhdbjISPbvsSxraI/qnm1xXwt/fRTlplIapafPtCj72tSpOsW91RrgWii43lLKwH3kplHR1BlVQZBg12KogvP6zA22rz4G9EIr4q+Rpg6733tgZH46JTWtEbdtyihfcrBIgQfTXHcDVduM5jlss/mOQgE1hZ7abb7DM6G7kmA0m8x2q8Nv+0MVeBADjt88dzAKL3ggI1NRbvRHxXTYnD6rCIKxjje026MyWrZZA4+/qtka1RreZnWQ5kPOme3vbIj80HuXS9Jh953mYrYfzb1vyoY0v+2nRRX107W39OcgiHL8qtEKVpjUtVnJSUv0+bsReek0dzqoa4tcOWlz36D+KkBB9OdQtFmdpPoRMEMUnGViLl5ZKb43kkNyUqlrs3V910hoDqBggZpyxC2dDr+blJy0RNIS46L2OLQE2AipUKhNxSTTz7Uoyk2lPcqzQcw+/CkOQ9wHPEZDc4eD9KR4n2E9KYlxFGQkRa/sdjjIDKAkQnTXwupwYXfKANfbyI8pb4xcADV3BL4WKp6L5g47QkC6jzXEtCL2pjj4XxtOl6Sh3UauHzk1siCNkurIDYGBPFipiUYlvmg2Uc0d/tfdrlznKO7hpg4b2an+nw+ITv41dtjJSvU990P6Ge3vjCIKpbHDTr+0wOOPbn7sZPmZn8Fd449iftrt9PM3P4rmv5+f8XeVao/6+sbGKGp3umi3Of3unYbmpkZ1tEpLpwMp8Xt/FuWkRVVlNNjeb2hOalS5643u9v1eX7d8i/YwaVUEVbCEEGPc1ZnWuP8/RQhxQ+yH1vtwuSR1rTby0pN8/t486C+a8IvaNhs5aYl7HPIHkJ+eRFK8JeoNUr27D1+o2EiaD1l2ECETTSUrcyOZmeLfM1NaF92D1txp96uYCCEYkhO9J6650+G3DxXCPhRFFKI7G6S5w91HgGsRjdUNDCXOn/Jj9hGtZybQ9VZRxKbLu+THOjlEgQGlJcj1LspNoybKA42bOx1kJMX7XKMADh6b37WR2ZtoWWXQ2G7DJYmZIbCpI7DRZnC/FHY2RrNm+X8OzVznqDbg7Xay/bSfkWzkiUQl/9ptftvPS08kOcES1TPe2G4jO8X3tR3cLwUholRQAsyPiiqUTe2BFBTzrKrI2ne5ZMD56fKwRmjw67Q7sTlcftuPVmaHoqBA5ApiY4fxzAe7vpHm4Ycy/mjSXBrdil+g6xttjqZKQvFgPQNcD9gBpJSrMM77+NVR22bF4ZIUZPhRsLoO4os8/KKmxeq3fYtFMLhfSlTWwXabgw6706+SaCo/0QiYujbj5vZnZVAR0lXbaiXeIgJa6lusjqhCAWparH6twOBOmI2yGlcgS3O3sI9CYXfH4vfz04cKL5kZ75+b5vueKsoxwj52ReGZqWm1kpPu/1oMzY0ud1BKSW2L1a9lNSHOwqDs6MJOq9xWx3w/z/fgfoYHqywK63ZNi9GHv821Cgt3TYt/Lz7Av44ez/8dMyHi9qNAyyq6vSMDslJ8/n5kgSGnSqojk1MVTR30S03wGwI+uF9KVHnC1cHW3Shznevb/HuwwPTyRr7m1gVoXwijUm80Hqz6NptfBcU8eD0aBaW+3eZXXmSlJJCRHB/x+K0OJy1Wh98Ncv/MZBLjLBFv8Js77bgkfuc/WgOyaZTw3350CmKdO5LE3/wX5UR3WLI5fn8e0GgLhJnjD2bAj/T5rXfvLf3NvwoPqEpCUbBSpZSLvd6L3PzZh9lUaQikMYUZPn8/qF8KifGWqAo47GzooDAz2e/vow3xKe8Svr77SHMfthjNZtW8uc3NnDfdVrDIhUxpfTuD+qX4DBnbrY8olNGdDR1d7fjsw13SPlIvWUVjJ06X7FJqffaRE50wNq/jkH6+N1tdm/oo5qmsvp289ESfSfWgxupZWt8eeJ76GRU2zQpk4VLfZqPN5vR7z4IRwhdNaIx5HQdl++6jMMPYXOyM4vkua+ggJSGOPD/KqHktdkZzvRvaAz4XPYiWVcBmt+I0ujDd5+/Nw95LIoy02NnQQX8/yhsYcnBXY2fEFTd3Brm/huSkRvyMuFySHXXtDM3x72EdGsWaa3U42dXY0ZWz6YtoPHxNHXYa2u3B249wnapqMdbQUOReJJh/Z260vYmzCAb1S4l4/rcH2XukJsaTn5EUcSGKHe69nb/575eaQFpiXMSyztzb+Rv/wOxkLCJyeW1+72B7s0jnv2v8fq5vt/yJbH7MvaW/+7N7/H1HwaoVQowEJIAQ4hSgIqaj6qUs3laHRcCEgZk+fx/nLnsdaYKv1eFkS3UL4wf4bh/cRQmi2NSvq2gGYGx/30qi0UdKVKXaN1a1kJ4U79dS3y81gcQ4C9UtkSeybqxs6doo+ML0Ata0RtZHQ5uNyubOrrBPX+RnJGF1uLpyEsJlfaVxLYYH6iM9iZoo3N0bKptJjDPKr/oiOSGOrJSEqPpYX9nS5b31hXkfRJrn1W5zUFrX3nXQoi8KMo0+6iMMe9pY2QIQ+HqnJ0VVnWt9RTMWYRTD8YXFIijITIoqvGFDZTMj8tN8nsEDntcisj7sThdbqlsZme//evcgWlYBi7bWkZWS4HcTOCg7haR4S0SFLqSUrClvZvwA//JjcD8jTySSZ6Wu1UpVszXg/VWQkUR9uy2iSnNlDe102J1B1/VI18Mt1a24pFFtzx8DslKoaIxMLm2qMtepwOttpOM318GRAeZnYHZyxEUoNoS6zkY4/k2VweenIIr52RCkfSEE+RlJEcu6De79mT9ZFx9nITc9KeL1e2NlK/EW4VdBSU+KJzUxLuL2N1Q2k5YYR2GGbwN+bloiQkBNhPOzsbKFvPQkvyGIBVHKN9WEomBdBjwFjBNClANXAH+J5aB6Iw6ni/eKd7HPsBy/uUUAA7JTIk5A/GFzLXanZM7wHL+fGRJl6Nt3m2rITI5nVIH/BSiaSi8ul+T7zTXMGZ7jd5MnhCA3PbHLnRwuuxo72Fzdyj4B5skMgaxtiayP77fUAjB7mP8+olUcvt9cQ1K8hSmDswL0kRhx+1JKFmyqZdrQbL9lZcHIC4h0Qapvs7G2vIl9hvfz+5n8rmsRWR8/ldThcElmh3K9I/we322uwSJgRpH/75GXnhTx/QTG9R4/INNvWGtXHxF+h1arg2U7GtgnwD1rhl5FusFYtqOBdpszYB89yK9eVjV32vl8bSWHjM33Wf0UDEU+0gNpV5c3UdtqDbgudhm3IrjHvt/sXncDPesZSUgZmTFlwSbjvOl9R+T6bz89iXabM6I8xQWbjPHPGRFAbqQn0tBuiygn9buNxjq1z7Ag61SEMuO7TTUkxluYPiRw+5Easr7bWENGUjwTAhiRDQUlwnV8Uw156UkBFcRo52dYbir9/UQAgXv8Ea6vC9wywp8CAZHLCCkl322qYcbQfkH2A5G1b+z9apk1LMdvfm58nIWc1MSI1ganS/LDllr2DfBspSfFkxRvicpgrJJQDhreKqU8DMgHxkkpD5BSbo/5yHoZz/2wjdL6di46cETAz/XPTKIyAuuOlJKnvttKXnoS+4/K8/u5aHJmKpo6+HhVBUdPHuCzBK5JYWYy1S2RhXh8vraSsvoOjp06MODncqPY1D/1XQkWAcdO8d9HfpcHK/w+bA4XTy8oYUhOCtOHBhY0ENlGoqKpg/dW7OLoyQOCLnb1bdaIhPG3G2vYWNXCCdMGBfxcNJv6p74rweGSHB+gj6yUBOItIqI+nC7JUwu2kp+RxG9G+n8uuq5FhFbzt5bu5NDxhX6LQ4BxT3XYnRFVv1xYUsvy0kaOnxb4uTCU3ciE/0sLt9Npd3HCdP/XIjkhjszk+IgF9JPflZCRHM8h4/IjGmMs0bIKHv5yMy2dDv50wPCAnxvcLzXsMCaXS3LP5xtJTrBw1OQBfj9nhqeGe4/ZnS6e+2EbQ3NSmT4k2+/n8t3th/us250uXvppB+MHZAbZgLvHH6YxpdPu5NVFO5hV1M9v/htAbnoSLgkNYR6F0mp18MaSMg4cnR/QyJufkUSr1RF2qfDGdhtvL9vJYeML/IZ7gyG769tsYe8Pqps7+XDVLo6a3N+v8g/G/EciU8vq2/l8bSXHTBng17hrtB+ZvNtc1cKCzTUcE2DfYbYfiRxaUdrAku0NIcmISDxAP22tY31FM8dM9f/sdrUfwfx/ub6KHXXtIYw/svn/aNUuqlusAec/Wg+iavyX5XIjhLjK6/8ATcAyKWVxbIbVu1hYUstdn23gqEn9OWx8QcDP9s9MpqbVit3pCqjEePP4tyUs3l7PHSdO9ntIG+xe5nXK4OyQ23c4XVw9byUSuOyQUQE/W5iZhN3pLvXrpxiGL7bXtnHtO6sYPyCTP0wJ9hBH/pC99NMOztuvKGCceHJCHOlJkW0kb/lwLWvKm3nijzP85nhB5F4Tq8PJpa8uR0rJX38X+FrkuYVxfZvNb8ilL8rq27lyXjFjCtM5aUYQBSsjiXW7mkNu2+SLtZU8tWArp88a4jcvEQyLeaQK9X1fbGTxtnruPnlKwOciP0Jl1+F0cdnry2mzOrjisNEBP+upUPs7p8QXFU0d/O31FYzMT+OsOUUBP5ublsSqnU0ht22ysKSW++dv4siJ/ZkWYHMKxvWORAA9/m0J326s4YY/jPd7zENP8muXVT9uqeXZH7Zxzr5FQWXDkJwUFpbUIqUMuBn15PFvt/D95lruOHFyQAu7Wewm3AiFB+ZvYnV5E4+cOd2vBRw8193w2r/3i41sqW7lqXNmBt6Ae4SX+8sl8cVtH6+jvLGDu06eEvBzuW4FLlBFYm+klPz73dXUt1n5+6GB1ynPtTDUXEkpJde8vYpOu5O/HhK4/dy0JBwuSVOH3W8xBm+cLsmV84oBuPTgkQE/m5eeREunoSD6K6Tijd3p4oo3i0lOiOPigwIbwfMyjOiZcO79TruTy98oJjslgfN+Myzo+H/aWhdSuyYtnXaueLOYAVnJnDl7aMDP5qeHf1B4U7uda95axaDsFE6dOSRw+xlJYR+zUd3cyfX/W83Ywoyge79IPJS7Gju46YO1TBqUyeETCgN+Ni/KtAqVhKIBzAIuBQa5X5cARwLPCCH+GcOx9QrMzdGI/HTuOXVq0Aeyf1YKUoa30ftibSX3fL6R46cN5MzZgW9+M9ekOswwxLs/38jCkjpuP2FS0EW3wB0/G04uSJvVwSWvLMNiETx9zsygymVeelLYAnhjZQv/fHsVs4r68e8/BK9SFok3YN6SMl77uZRLDh4R0EoLxkIN4StYN72/lpVljdx32rSguSyR5Mx02p1c+uoyXC7J0+fMCiqk8tPDD2koqWnlqnkrmTI4i1uOnxj085GEZXy2poLHvy3hzNlDOG2fwM9FpNfizk83sGhrPf89aTITB/oP1TT6CP9amMp0p93JU+fM8nl2kCe56YnUhWkd3tVorFHDclO559TAmzuIzML63aYa7v1iI8dOHciFQbwjPcivVlbVt9m4et5KRuSn8a+jxwf9/JB+xvl3oYZ6Ldpax/3zN3Hc1OAyqkuBaAv9Hvt+cw1PfFfCGfsMCRr9kB9BCOI3G6p56rutnDVnKEdM7B+4/S4FJfT16uNVFby6qJRLDhrBAaP9e9rBUwENffxvLd3J+8W7uOKwMcwMEMYMka2FLy7czvx1VVx75Di/OeYmkVzfJ77dwo9b6rjluIkB86Og+/qGc4zAfV9sYtmOBu44aTKDsv17D8G4vjanq+t4kVC4/eP1rKto5r7TpgY1dOZnJNHYbg+54JKUkn+9u4adDR08fOb0gMYLs/2aVmvIefiG8rySquZOHj1rekDvJIQvq50uyeVvFNNuc/LoWdMDRuQY7YfnIbM7Xfx97grsDhePnBnY6G20H3lEjmpCUbAGAzOklFdLKa8GZgIFwEHA+ZF0KoS4WQhRLoQodr+O9vjd9UKILUKIjUKIIyJpXxWem6Mnz54ZdHME0D/LePhCzcPy3KjedfKUoApcTmoicRYR1gbpraVlPL1gK+fuV8SpswILRzA8WNBdVjoY5gO8ubqFR8+cEZLVzPRohLpINHXYueSVpaQnxfP4H2cE9GaYGJaM0BXRVTsbueH9New/Kpdrfj826Odz05KMhM0wFovXfy7ljSVlXHbISI6cFFjQQ/heMikl//rfatZVNPPQGdMZFqAwhEl+RhItYYSUtFodXPrKMhLjLTxx9syQrIzhWpU2V7Vw9byVTBuSzc3HBVfgUhPjSUuMCyus5/3icp79YRvn/2YYJ80YHPTzkXjJbv5gnVuZnhow79EkLz0Jp9s6HAqmMm11uHj63FkB87tMwlWoS+va+fvcFYwtzOCukyeHbPXtAX6VskpKyTVvraS+zcbDZwTfQEF4RwLUtVq5/I0VFOWmccdJwa9/elI8ifGWkA1o1S2dXPlmMaML0rnp2NCMNRD6c1jZ1MlV84oZ1z+DG0M4PiDc8PKy+naue2cV04dm848jgsuN/IzwQhw3VbVw4wdr+M3I3KDRJwD56YaBNNT5Wb2ziTs+Wc9h4wtDMp7kh+lBXLK9nvvnb+L4aQM5LYT9R7jX99uN1Tz5XQlnzh7KcUGU893aD3H+P11dwSuLdnDxgcP53bjA3hPP9kOV2W8uKePDlbu48rDRIeW25qUnYXO4aAkxVP3ln3bwhVt5DpTyYJKfYeTY2UMsIvPYN1v4aWsdtxw/kdEBIllMTAUo1L3fg19uYqlbeQ5U6MokmiIvqglFwSoAPEdrBwqllB1e74fLA1LKae7XJwBCiAkY55ZMxLA8Pi6ECM1HHANu+TC8zRFA/0xDcIWSh9XmsVF9MsSNqsUiwrIALN5Wz7/eXc3+o3JDPpvGLBMfqgfrqQVb+WR1JdcdNS6o9c4kP90IQwzFiiSl5Op5xZQ3dvDE2TMoCFDGfrc+wgiFamiz8ZdXl5OfnsTDZ0wPGCNuEmcR5KaFHvq2sqyRmz5Yw0Fj8rnq8OCCGML3YL26aAf/W1HOlYeN4ZBxgcNZTcycg1DuKSkl1769ipKaVh49c3pQa6FJOGEBbVYHl7y6jJTEOJ44e0ZQi5hJXhh9bKpq4dp3VjF7WA7//kNwi7/RfniW4XlLy5i7uJS//HYkR04K7A01yQ0zf+WWD9eyamcT9582NeTKfqYFNBRMBU5KyVPnzOyVoYEe/Cpl1Qs/buerDdX86+hxTBoU2AtrEuqh1i6X5Mp5K2lot/PoWdNDMjIKIQwlPoS111AOV9FqdfDoWTNCUg7Twqh0JqXk2ndW0WF38uhZM0KSsTnuSmehGCFcLsnVb60E4OEzpoeUFmB6sEKZH7vTxVXziklLjOfB06cFtd5DeMWXOu1OrpxXTG5aEvecEtzAC3SlDYQy/21WB1fNK2ZITiq3nxiacaZr/CHMf2O7jX++vYoxhencdGxo+5twZGp1SyfXv7uaKYOzuOaIccrb317bxs0frmX/Ubn85bfBlefd2g9hfkpqWrnjk/UcMjafiw4MLfLAVBBD8W4XlzXy4JebOGHaQE6dGdxICcb4O+0u2mzBDbrLdtTz+LclnD5rSMA8b+/2Q60yGmkF6FAJRcF6DfhZCHGTEOIm4EfgdSFEGrBO8XiOB96QUlqllNuALcBsxX2ExPvF5bz+cymXHhz65giMEqZA0ENVpZRc/7/VlNS08vAZ0xkY4kYVjBsoFOVnV2MHl766jCH9Unn8rOBhe57tQ2hhiD9uqeXuzzbwhykDuDhIARBffYRSRv3Vn0v5cn01/zp6PDOLQq9eFqrXxHDRr6a6pZMnzp4RVt6Z0Ufwhajd5uCKN4vdClxogtJoP3TlZ3NVC7d9vJ7fjs3nryFYOk3Csdi+tXQnH6+u4JojxvGbAMVYfPURqtXqto/Xsa22jYfPnB4wWXyPPkK83laHEU+flhjPo38MbVMExsbIEmKJ2W21bdz0/lr2G5HLP0LwhpqEcy0+W1PJ3MVlXHrwSH4fJOzJk7z0xK4ch2Dc+/lG1lU088Dp07oO0ezF/Opk1fbaNu76bAOHjisImhviSajn3Tz7w1YWbKrhxmMmBA2h9cQIdQ1+D7+5pIzvNtXwr6PHB8zj9CZUg828pUb71x05LmQjaYJZ6SyE9l9cuJ3F2+q58dgJIec7hVP054lvS1hT3sxtJ0wK2bCYG4bMeODLTWypbuXOkyeHnE/VXQQkePv//XQ9Oxs6uO/UqSEp5xDeGnjLh+uob7Nx/2nTQs7XCjXE1Mh7W0O7zcn9p00NKWomnPZdLiPyJyHOwn2nhr4nCLV9p0ty9byVJCfEhRQdFW77nXYnV88rpn9mMv85YZLy9jtsTv7x1ioGZqXwfyEqz2b7oVQZLatvZ/87v+aDlbtCbjtcQqkieCtGLHuj+3WplPI/Uso2KeUfo+j7r0KIVUKI54UQpt9yEFDm8Zmd7vf2QAjxZyHEUiHE0pqamiiGsSdVzZ3c+P5aZhb14x+/HxPW32alGAfNBRNcL/+0gw9W7uLq348N2etjUpCRHPLD22l38ux5s/ye/O4L82ykYErcrsYO/jZ3BSPz07k7jAcYusMMgvVRUtPK7R+v4+Ax+ZwfxgYCjAetqcOO1RF4I/nO8nI+XVPJVYePDatwiNlHKILg9o/Xs72ujXtPmxqwApQ36UnxJCdYglojbQ4jyTctKZ67T5kSMEncGzOkJJjALK1r55YPDaXhkiCJxN7kuT2WwULf5q+rYu7iMi45aGTAqoG+CHXTdf8Xm1hf0czdp0zpyjcMhTiLICctuPfY4XRx5ZvFJMQJ7j99asiCE0IvcW0kFa9i0qBMrjo8vDUqVAurZ9GEQ8cHD43paX5tskpKyb/fW01inCVk74BJelI8/VITAlYSXL2ziXs+38iRE/vzxzmBE++9yQ3hOdnZ0M5tH6/nNyNzOTtI8RdvQjGm7Gxo59aP1rPviBzO3W9YWO2HYpzbWtPK3Z8byu0pIVrvwYxCCd7+2l1NPPzVZo6bOjBoPrAnCXEW+qUmBDVeLtvRwDMLtnLm7CH8dmxo0Q4A/VITiQ8hTeGHzbW8uqiUiw4YzqwwjnUIVUH8fG0l764o57JDRoXsuYXQQ73fKy5n/roqrvn9WEYVhKf8Q/D19YWF21myvYGbjp0YsOy7N6GGOD7z/VaKyxr5z/ETQ1bOIXQF6IH5myipaePOk6cErL4bafv3fL6RbbVt3HPqlJCVc+iuMhpob2k6OBxOV9CcxmgISSWXUi4B5gLvAtVCiKCrrRDiSyHEGh+v44EngJHANIyDIO8Ld+BSyqellLOklLPy89WVDDZzWKwOJ/ecMiWkUDFPhBAM7hf4JPhlOxq47eN1HDa+gL8Eqajji1CEy4sLt/Pjljr+75gJQZNKfVGQkRQwB8vlklz5ZjE2h4snz5kZVlU1CC2Mwe50ccUbxaQkxIUcvuCrj0C5AGX17dz8wVpmD8vhz2EqDRBaPstX66t47edSLj5wRNhKgxChCeMHvtzE2l3N3HnS5LCUBugOfQu0YDucLq6cV4zFIrjvtKlhKXAQ2qJa3dLJte+sYsKA8JUGCK14w08ldTz9vZHsHonSEMq1ePSbLRSXNXL7iZPD8sBBaPkTZsWvdpuTB0+fFrJltauPEK5FU7s9rKIJvYVfk6x6r7icH7fU8c+jxoW1QTMZ4j603hdtVgd/f2MFeelJ3BlB3p1x1Efge/jad1YhpeSuk8MzCEHw59Cz/XtOiWy9CrRBdrok/3hrJUnxcfw3hLw0b4IdKG5zGFV/+6UlcksIOajeGGcx+Zd7hndgJQOyUsJ+vk0FsbrZ//hbOu388+2VjMxP4+owPPgASfGGgTfQ/Ne32fj3u6uZMCAzpLw0T7JSEkiIC6wgVjV3ctP7a5lV1C/okQfehHLW4NaaVu52e55PDlLl15tQ1u/NVS3c/4VRVTaUvLTd2g9BgVte2sAz3xvK+UFjwlvTQsmx+3lrHS8s3MZ5+xVFZGiFwOOft7SMH7bUcv3R40NOc4iEUMq0H4chVAYC1cBQYANG7Llf3OeRBEUI8Qzwkfu/5YBnFuRg93t7jc/WVPLVhuqIFRMwEojL/YQI1rZauey15QzISuG+U6eFvfCDsTjXthpnI/myjm+uaukKGzkjSPU1fwQTkC8u3M7P2+q5+5QpIed+eBLKIvHQl5tZXd7Ek2fPDMsC09WHx4PsKwTT6ZJc5S4de99p4XkaTPI8Kvr4ErI1LVb++fYqxvXP4OowvaEmwZI2f95a507yHRJWqJhJV05AAIH85HclLNvRwENnTAsrnNUkz+PsGl+JsGZuV5vVwUNnhK80wO7Vm3z9fVOHnavnFTMsN40bQsy78tVHIMG/orSBR77ewgnTBgathuaLzBSjQECg6/3Koh18t6mG/xw/MSzLqkkwASel5F/vraa21cr/zv1NSHkxvYFfk6zqtDu5+7ONTB2cxR+DlHX2x+B+KayvaPH5u5s/WMv2ujbmXrxvWB53k4LMZGoDHFfy2s+l/LiljjtOnBxyaJ0n+RlJLNrmvxS22f7tJwavmuuv/e3b/Zeqfvb7rSwvbeShM6ZFLJt2BcjTfvTrzWyobOGZc2eFHLrnSTBjk+kdeO2iOSEVxvEmWOTGbR+tp7K5k3f+8puQQ/c8CZZnfuP7a2jqsPPKhXPClhXBPIhSSq57ZxU2p4t7Tg1/X2CeNeivfafLMJAlxVtCKhrjTbY7xNRf+w6ni6vfWkl6cjy3nRh66J5JsL1Zpz1y5dyzfX9ytM3q4Jq3VzGkXyrXHhVa3ttu7QeJyKls6uS2j9YzZ3gOZ0W4doZKKHfmrcC+wCYp5XDgMGBRNJ0KITz93ScCa9w/fwCcIYRIEkIMB0YDi6PpKxw67U5u/2Q94/pncN5+4YUseDKoXwrlPkIvHO5ykw3tNp44e0ZYYXue5Gd0n43kjc1heBrSkuK5M8ywPU8KMvxbqEpqWrsUuFATG73psiL5eQiWbK/n8W+3cNqswSFV2/NFsIXiqQUlLNnewH+OnxiREAZ3yVc/FX3MhbrF6uChM4KXL/VHoLKjzZ12rpq3kqKcVG4IoXS9LxLjA4eUrNrZyINfbubYqQNDTjT1Jljo26s/l/LNxhquP2pcSJWIfGEqDv5yP258fw1VLVYeOH1axMUaAnmP220Orpq3kv6Zydxy/KSI2jcLBPjrY0t1C7d/vJ6Dx+Rzzr6RrVHBvMfvFZfz8aoKrjx8TNghsz3Mr0ZWvfDjdiqaOrn+6PERGenAKNVe3tCxx5EAH67cxVvLdvLXQ0ax74jciNrun5ns97iSsvp27vhkPQeOzgta8t0fpjHFV/h3aV13+5FuoEyjlq+c0c1VLdw3fxNHTCwM2ztgUpDpv8Ltqp2NPPZtCSfNGBT0zB9/BDLKmd6Bc/YtYv8w8mg9CbQ/+GZjNW8uLeOSg0eGVLXOF4EMWR+vquCjVRVcfuhoxg8IXFI+UPv+5uetZTv5ZmMN1x45LqSqdX7b9zP+F37cxrIdDdxy/MSugmLhYCqI/ubnye9KWLWziVuPnxTyOWueJCfEkZHkX0G874uNbK1p466Tp0SknPczK2H7af/OTzdQ1tDOvadOjUhOB4rIMc+Ts7tcEXnOwyUUBcsupawDLEIIi5TyG4zzRqLhbiHEaiHEKuAQ4EoAKeVaYB5GQvJnwGVSyvCOI4+C537Yxs6GDm48ZkLYoYGeDOmXSnOngwYvBej++ZtYWFLHbSdMCith2JtAMcQPf7WZNeXN3HHi5LAOpvWmIDOZ6pbOPQSMeWBxSmJkoREmgTaSLZ12rnyzmMH9UrkxhLK9/sgL4CpeU97EA/M38YfJAzhxemRKAwRW4uYuLuOrDdVce+Q4xvaPTGkw+/C3GN38/loqmzu5//RpYYdphtJHh81pFOfISOK2CJUGCBz6ZubZHTQmP+xcid36CHAt3i8u5/3iXVx+6OigB/EG68PfGSS3ufPs7jttatCzTELpwxubw2UU50iK555TIzeemB5LX/O0s6GdG98zQmOCHQjaC/lVyKrGdhuPf7uFQ8cVRKwAAQzOScXmdO0WqVDe2MG/3l3NtCHZQQ+0DYR5XIl3mLmZG2wRIioDoL/wb7P9OCHCSuz3Ji89EasPw5nD6eIfb60kLTGO206IXP7lZyRT17ZnpTOrw8nV81aSl57ITcdELvv8ydZ2W7d34LoIvANd7ftZo5ra7Vz3jlHVL9jB7YHb951nXtNi5Yb3VjN5UFZU65O/+dnV2MGtH65jzvAczotSFvmTdfd8vpHDxhdyQoTGSjCUCF/tr69o5qGvNnPMlAFBD/wNhL/ru2xHPc/+sI2z5gwNu3aAiVl92df4f9xSyyuLdvCn/Ycze3joeXuepCbGk+5HQXy/eBdfbajmH78fG9IRNtESyo6sUQiRDiwAXhNCVAPhHfPshZTynAC/ux24PZr2I6Gx3cYT35bw+wmFYVVH88VE90F9q8ubuuJT56+r6jo0NZSzqAJhHjbs/QAs29HA499u4dSZkXt9TAozjaIEDe12cjxCFJ5aYCROPnLm9IhCIzzJ8/MQ3/zBOnY1dvDWpb8JK7lxj/b9VDvqtBtKQ05aIrdH4ELfvY/ukqmeoZJba1q59aN1HDAqjwvCLM7hqw+z7Kin4v/hyl38b0U5Vxw2mhkRWgo9+/Dl0bjjk/VsrWnj9YvmROxxBXfoW9yexTq88+yisSj5q7hY3tjBDe+tYcbQbP7fb6NTGjzPIPFM7P1qfRWv/2wcNBrNphcM4eYrN8bMs3vqnJlh59l5khhvIduHx9IImV2JBB4IsSR0L+NXIate+HE7LZ0OrjkyvNwWb4Z0nYXVTv+sZJwuyZVvFONySR46Y1rI1TV9YVrmvRWsVxbtYNHWeu46OfiBsIHwF/790k/u0PWTp0QUytzVvoexxvM5f2rBVlbubOKxs2ZEZcA0K53Vtdl282I8+OVmNle38sIF+0S13uZlJNFhd9JqdewmQ+/8dAOl9e28+ed9ozbI1flIU7jlo7XUttp49tx9Io7YgO4QQc/QeyklN7y3mjark/tOmxqVETw/I4mVO5t2e8/M23NGmLe3+/iTWLurebf3nC7jvLqUxDjuOCm6fUd++p45fHa38TsrJYH/RGEMBffezKt9z6p+0ebl+gphNfL2VjEiLy2syru+8KXg1rRYufnDtUwfms0F+4eXVxcpodyhxwPtGJa7z4AS4JhYDqoneO6HbbRaHWEnZPpi0uAshDAUHjBCCq58s5jJg7JCOkgxGObmqrKpO8/LPG9iYHYKN4ZR0jJYH9UeYQwbKpt58EvD6xNJfok3g7JT9thIfrK6gneWG+Ep0VZ3SYqPIy89kVKvPu78dANbqlu599TwKvr5wizLv8OjD7u7ilxivIV7T41uoQYYnJ2ClLuXVK5o6uDfbktzOCXZ/TEwO2WPefpmYzWvLNrBRQcMj9roIIRgQHbyHtfbzLP770mTIwqX8GSQe8Po+T2cLslVbxqbxgdOnxaVUAa6Nm2ldd191LZaufadVYwfkMlVEebZeWI+F56hW4u31fPkd8Z5IEdEkGfnu4/d80SfXrCVxdvqufm4yENme5hfvKxqtzl46aftHDa+kHH9IwuPMjH/fvG2egDu+mwDi7fX85/jJ0Vdkn9wtnH/7PB4TrbXtnHnpxs4eEx+SAfOBsJ81rfXdevP29wl6w8Zm8+psyILXTcZ3M8Yv+dz3iX/ovQOGO0b4/ecnxWlDTzlfsYPCaOqny+GuMe/vbZ7fhZuqeXln3Zwwf7DmBOlEWhwvxRccvdz1Oavq+J/y8u57LcjmTw48ggdMMbfZnPuZpD7YOUuPl9bxVW/HxNWSX9fDMpOobbVSpuHh3Lu4jK+32wUPhiaG936Z6SJdOx2WO9zPxh5e7ccNzEqA5nZfml9+26RFI9+vYV1Fc3cdsLk3YziEbWfnbLbvQ9w7xdG3t7dp4RX1c8Xg/ulsKNud9vXHZ+sp6Kpg3tOnRp13u/A7OQ99jM3f7CWdqtRvG5vGQ9D2W3cKKV0SSkdUsqXpJQPA9fGemB7k6Z2Oy/+uJ2jJvWPKpTLJDM5gZlD+/HByl1sqW7hgheXkJwQx1PnhHaYcDAGZqeQmhi3W4LyrR+to7S+nftOnRpRXKw3hZlmiIdhBfC0jtx6QnTWEZMxhRlsr2vrOo+nsqmTf727mqmDs/hbFOEp3n1squqepwWbanhx4XYu2H8YB46OvqJXUW4aSfEWNlV29/HIV5tZubOJO06cHFF1L2/GuO/Jje7v4XJXsHIoUhoAxhZmUNNi7crrq2vtLs7xjyOiNzqAcS02VHZb9Za68+wMj2t0GxYwrHr9UhN2u97Pfr+Vn7fVc9OxE5Wc4zS2v+Gl3Oi+3maeXXOngwdPnxaV1dZkTGEGbTZnV6GcZnfI7NCcVCXGEzCut+c8rSlv4v75Gzl6cv+wq1r1In7xsuqNxWU0ttv5S5SeWID+WcnMGJrN6z+XcvMHa3l6wVbO3a+IkyPMq/UkKzWBgVnJrKswnncz8T4+TkRUldCbkfnpxFtE1z1shu4lxlmiCj00MTfwG9zPudXh5Ko33fIvSu8AwDhzTXevhx02J1e/ZeRv/vuY6Kt2eq9TzZ12rnl7FcPz0vhniAfmBm7fUM7N+alvs/Gvd1czrn8Gf/1d9LJ7bNf8GO1XNhlH50wfmh3WeZvB2jfvn7L6dm7/2Ig4OTvMIwl8Ma5/Bjanq0vB3VzVwr1fRJe358nY/pm0dDq6CqWs3tnEY98YxZWijV4y2s+gsrmTxnZjP/Dz1jqe/3EbZ+87NOK8Pe/2t9e1d+39vtlYzdzFZVx84AglZdPHFmayqaoFp9tI+fGqCj5eXcHlh42OqDBUpISyMzvcx3tHqR5IT/Lcj9tosTqiijn35uKDRrCtto3D7l9Aq9XB8+fPiipkwZM4i2DCgExW7WwE4KNVu3hjSRl/OXhk1JYpE3Mzus7t5n5gvhGepMI6YjK2fwZSGnHDDqeLv7+xApvDxQOnRxee4t3HpqpWbA4X1c2dXDWvmDGF6Vx7ZPRCBoxrMbowvSscYGFJLY98s4WTZgyK2sppMrogHSHo6uOJ70r4cUsdNx4zIeIkXG9MgbN2VxMul+Tqt1bS1GHngdNDP8AxGOP6Z7Ctto02q4PGdht/n7uCwf1SuSmCMsS+EEIwpjCja55WlDZwz+cbOWJiYdQWbZNhuWkkxlu6+nhp4Xa+XB99np0n3deiuUuBq2zu5P7Tosuz82RM/wwqmjqpa7XSanXw19eXGyGzUeSV9AJ+0bLK5nDx7PdbmT08R9nZLdcfPZ6aVisvLtzOmbOHcOMxahR4gAkDs1hR2oiUkke+3mIcT3LCpLCPLvBFYryFEflprHKHeT36jdH+rSdMitoTDkYRpoFZyawpN9q/74tNrKto5r8nTVEi//pnJpOVksBqd/u3fbyOrTVt3HPq1LDOFPKHuU6Z7d/43hoqmzu5V4F3AGBMoSGT1pQ3dYXWNbXbuf+0yCrAemOugavLTXlkHAlzbwRV/XxhFsdYU96Ew+ni8jdWYLEI7orgOBhfmN7h1eVNWB1O/v5GMRlJ8VHl7Xky3pyfnU202xxc7j5S4WZFstQ0AKwpb6apwyikNTQnleuPUnNkx7j+mThdknUVzdS2WrnmrVWMLczgygiOZ/HZ/oAMOu0utta0UtHU0WW4j+QonmjwK62FEH8B/h8wwp3ga5IB/Bjrge1N9hnWj78eMiriijS+OGJif548eyYbK1s4ddZgZcqVyYGj83nwq0288OM27vpsA9OHZiu7OcGIYR3XP4PP1lSQm5bYlT+mwjpisu+IXOIsgg9W7uLtZTtZvK2e+0+bGnF5fF8cMCqPF37czgcrd/HazztotTqYe/G+ypQGgP1H5fHc99tYuKWWv7+xghF5aUqsnCZpSfFMH5LN52sqGVOYzn1fbOTYqQM5PcIS/L6YUdSPpHgLH6+q4PvNtXy7sYZbj5+o9JnYf1Qej3y9hXdXlPPJ6gpqWq2885fo8uy8OWBUHvfN38T3m2v459urKMxM5u6TpypTGuLjLMwZnsMX6yrZd0QOt3+ynkPHFfCn/YcpaR9g8qAsMpLj+Xh1BRsqm/lkdSXXHjlO6YGI+7vPFnl3RTkLS+oorW9n7sX7RlQSuqf5tcgqp0ty5uyhzFB4H+wzLIcfrj2EDptTiYfXk8MnFPDl+iqumreSd1eUc9L0QRFXIfXFb8cW8MKP23jkq8089NVmTlTc/sFj83m/eBcPf7WZpxds5Y9zhkZc1c8bIQQHjcnni3VV9P9iI6/9XMqfDxqhxDsAxjp14Kg8Pl1TQVKChfeKd3HlYWOUrSGpifHsMyyHD1buotXqYP66Km74w3gmDFQjL/LSk5g0KJN3V+yktL6NH7fU8d+TJkd0JIwvBvdLYXheGvOW7mR5aSPLSxt5+Mzpys5EGlOYQWFmEnMXlzJ/XRXrK5p57rxZUeXteTJlcDZZKQm89vMO3lxSyrY6o+R+tCkPJvsMyyE5wcKLC7fTZnVQ1dzJW5fup8zA95uRucRbBM//sI3yxg6aO+28etFsZfuyA0fnIQQ8+d1W1lc0Y3e6ePCM6coM96EifFXDAhBCZAH9gP8C13n8qkVKWb8XxhYys2bNkkuXLu3pYexVqpo7OeLBBTS22xlTmM7rF+8bUUnOQLz+cyn/enc1YDwQL1wQXeKqL/42dwUfrtwFwCUHj1BmITGxOpwcfv8CSuvbibMIHjtrhlIlEYzKQEc9+D02p4u89ETe+PN+jCpQpyQC/G/5Tq6atxKA6UOzeeXCOUoVE4Dr/7eKuYvLADh736Hcenx0ibjeOF2Sox5awKaqVoSA+0+byonT1XiWTHY2tHP4/QvosDvJSklg7sX7KhP6Jp+vreSSV5YBMGFAJnMv3jeqhHRf3PbROp79YRsAJ00fpCSXzxMpJSc8vpCVZY0A3H7iJP44J/KjKWKBEGKZlDJoFUAtq3onHTYnJz7+IxsqW/j9hEIeOSvyoyp8saOujaMe+p52m5P9RuTy/Pn7KD2zbX1FM8c/+iM2p4uDx+Tz9LkzlY5/eWkDpz75E06X5MiJ/Xn0rOlKwr1NftxSy9nP/YyUsVlD5q+r4uKXjXs5FvLi/eJyLn+jGIBLDhrBdUeNU9q+5/7mysPGcHkUVQ998fSCEu74ZAMA/z56PBcr9p48MH8TD321GYuAW09Qv36bMijOIrj31CnKZbW530iIEzxy5nQlaQKe/H3uCj5YuYukeAtPnTOT30aZ1xgIf7IqkIIVsEZibxJcvyah5Ul5Ywdr3ZUKVXpkTKSUfLBylyEoZwxSrlyBUZxj7uJSinLTOGx8QUzCk8rq2/lg5S4OHpPPpEHRJd/6Y+n2epZsb+CkGYOUhKh4I6Xkw1UVNLXbOHXWkJhc7067k7mLSynMTOaoSf1jci0qmjp4d0U5+47IjbryoT9WljXyY0ktx00d2JWsrprP1lRQ0dTJabOGKLPqeWJzuHhjSSlZKQkcO2VgTM7rqGmx8vayncwYmq0stFglYShYWlb1UmwOF1XNnQzulxKT9aS0rp2tta0cMCpPqXJisqW6hZ0NHRw4Oj8mifEbKpupbrZywKi8mDzja8qbaO6ws9/I3JjMf3FZI1a7k9nDc2LS/rIdxqM7syiykt3BWLS1jpSEOKZGcXSHP6SULCypIzs1Iapjefzhckm+31JL/8xkZeHpnjhdkgWbaxjSL1W5wRiMvMnvNtUwMj89JiXTrQ4n32+qZWz/jJgXbYpEwdoGmL/0fnKklHLvBjMG4NcmtDQajeaXThgKlpZVGo1Go+kR/Mkqv6ZXKeXeKRSv0Wg0Gk2EaFml0Wg0mt5GSLEtQojjgIPc//1WSvlR7Iak0Wg0Gk34aFml0Wg0mt5A0KBlIcSdwOXAOvfrciHEHbEemEaj0Wg0oaJllUaj0Wh6C6F4sI4GpkkpXQBCiJeAFcC/YjkwjUaj0WjCQMsqjUaj0fQKQi1/lQ2YlZhiU4YtCpYtW1YrhNgRZTN5QK2K8ewF+spY+8o4oe+Mta+ME/rOWPvKOKHvjFXFOCOpO5yNllW9hb4yTug7Y+0r44S+M9a+Mk7oO2PtK+OEGMqqUBSs/wIrhBDfYFRoOojdzxrpcaSU+dG2IYRYGkrFqt5AXxlrXxkn9J2x9pVxQt8Za18ZJ/SdsfbQOLWs6kX0lXFC3xlrXxkn9J2x9pVxQt8Za18ZJ8R2rH4VLCHEY8DrUsq5QohvgX3cv7pWSlkZi8FoNBqNRhMOWlZpNBqNprcRyIO1CbhXCDEAmAfMlVKu2DvD0mg0Go0mJLSs0mg0Gk2vwm8VQSnlQ1LK/YCDgTrgeSHEBiHETUKIMXtthHuPp3t6AGHQV8baV8YJfWesfWWc0HfG2lfGCX1nrHttnFpW9Vr6yjih74y1r4wT+s5Y+8o4oe+Mta+ME2I4ViGlDP3DQkwHngemSCnjYjUojUaj0WgiRcsqjUaj0fQkoZyDFS+EOFYI8RrwKbAROCnmI9NoNBqNJkS0rNJoNBpNb8GvB0sIcThwJsbZIouBN4D3pZRte294Go1Go9H4R8sqjUaj0fQ2AnmwrgcWAuOllMdJKV//pQosIcSRQoiNQogtQoheU9ZXCDFECPGNEGKdEGKtEOJy9/s3CyHKhRDF7tfRPT1WACHEdiHEaveYlrrfyxFCzBdCbHb/26+HxzjWY96KhRDNQogresucCiGeF0JUCyHWeLzncw6FwcPu+3aVEGJGD4/zHnfuyyohxLtCiGz3+8OEEB0ec/vk3hpngLH6vd5CiOvdc7pRCHFED4/zTY8xbhdCFLvf77E5DbAu9dR9+quQVb1VTkHfklV9QU65x9RrZVVfkVMBxtrrZFVfkVMBxqpllTdSyl/1C4gDSoARQCKwEpjQ0+Nyj20AMMP9cwZGtawJwM3AP3p6fD7Gux3I83rvbuA698/XAXf19Di9rn0lxiFxvWJOMc7umQGsCTaHGBb7TzHO/NkX+LmHx/l7IN79810e4xzm+bleMqc+r7f7+VoJJAHD3WtDXE+N0+v39wE39vScBliXet19+kt59WY5FeSe6BXrqtdY+5Sc8rj+vUZW9RU5FWCsvU5W9RU55W+sXr/XskrK4DlYvwJmA1uklFullDaM8JLje3hMAEgpK6SUy90/twDrgUE9O6qwOR54yf3zS8AJPTeUPTgUKJFS7ujpgZhIKRcA9V5v+5vD44GXpcEiIFsYpap7ZJxSyi+klA73fxcBg/fGWILhZ079cTzwhpTSKqXcBmzBWCNiTqBxCiEEcBowd2+MJRAB1qVed5/+gui1cgp+EbKqN8sp6GWyqq/IKeg7sqqvyCnQsipUtIJlTHaZx/930gsFgxBiGDAd+Nn91l/dLszne0M4gxsJfCGEWCaE+LP7vUIpZYX750qgsGeG5pMz2H0R6I1zCv7nsDffu3/CsASZDBdCrBBCfCeEOLCnBuWFr+vdW+f0QKBKSrnZ470en1Ovdakv3qd9hT4zh31AVvU1OQV9Q1b11ee/t8uqviSnQMuqLrSC1QcQQqQD7wBXSCmbgSeAkcA0oALDHdsbOEBKOQM4CrhMCHGQ5y+l4YMN/VyAGCKESASOA95yv9Vb53Q3etMc+kOI/8/eeYfHVZyL+/12pVXvxVWW3A0G00wvAUISIJRASL8p95ebcpPc3NxUEpJACiWU9E4KpJLQe+9gsLHBvXdZtlWsXrfN749zjrRanV3t7hlZEsz7PPtY3j2a/TRnznzzlflGrgLCwN/ttw4As5RSxwFfBv4hIsXjJZ/NpLjfMXyI4Qusce9Tl3lpkMkwTg36mSS6atLoKZicumqi9WEiJoGumvD32gWjq2yMgQUNQE3M/2fa700IRCQba2D8XSl1D4BSqlEpFVFKRYFbOYyh4WQopRrsf5uAe7HkanRCrPa/TeMn4TAuAF5XSjXCxO1Tm0R9OOHGroh8ArgI+Ig9cWGnMRyyf16FlS8+rgfAJrnfE7FPs7DKjf/LeW+8+9RtXmISjdNJyITvw8miqyaZnoLJo6sm1fM/GXTVZNJTYHRVPMbAgteA+SIy2/YUfRB4YJxlAgZzWf8IbFJK/Tjm/dic0MuA9fG/e7gRkQIRKXJ+xtpEuh6rLz9uX/Zx4P7xkXAEw7wsE7FPY0jUhw8AH7Mr35wCdMSEvQ87InI+8HXgEqVUb8z7VSLit3+eA8wHdo6PlIMyJbrfDwAfFJEcEZmNJeuKwy1fHOcBm5VS+5w3xrNPE81LTJJxOkmZsHoKJo+umoR6CiaPrpo0z/9k0VWTTE+B0VXDUeNQ2WOivbAqh2zFsqyvGm95YuQ6Ayt0uRZYbb8uBP4KrLPffwCYNgFknYNV1WYNsMHpR6ACeBrYBjwFlE8AWQuAQ0BJzHsTok+xFOkBIISV//vJRH2IVenmV/a4XQcsHWc5t2PlLztj9bf2te+1x8Rq4HXg4gnQpwnvN3CV3adbgAvGU077/duAz8ZdO259mmRemnDj9M30YoLqqVHGxISYV2PknDR6ypZrQuqqBHPqhHz+E8g64XRVAjknnJ5KJKv9/m0YXTX4SnjQsMFgMBgMBoPBYDAY0sOkCBoMBoPBYDAYDAaDJoyBZTAYDAaDwWAwGAyaMAaWwWAwGAwGg8FgMGjCGFgGg8FgMBgMBoPBoAljYBkMBoPBYDAYDAaDJoyBZTCkiYhUiMhq+3VQRBrsn7tF5Ndj9J1fEpGP2T9/X0TOG4vvcfnei0Tk+4fjuwwGg8GgB6OnDIbxxZRpNxg8ICLXAN1KqZvH8DuysM6POF4pFR6r70nw3WJ/9+kq5kBGg8FgMEwOjJ4yGA4/JoJlMGhCRM4WkYfsn68RkdtF5EUR2SMil4vIjSKyTkQeE5Fs+7oTROR5EVklIo/HndzucC7wuqO0ROQ2EbnC/nm3iHxPRF63217kItcnROQ+EXnSvv4LIvJlEXlDRF4VkXL7ui+KyEYRWSsidwAoywPzHHDRGHSZwWAwGA4jRk8ZDIcHY2AZDGPHXCylcwnwN+BZpdTRQB/wblt5/QK4Qil1AvAn4FqXdk4HViX5nhal1PHAb4CvJrjmKOBy4ET7O3qVUscBrwAfs6+5EjhOKbUE+GzM764EzhzlbzUYDAbD5MPoKYNhDMgabwEMhjcxjyqlQiKyDvADj9nvrwPqgIVYCuVJK8MBP3DApZ1pwKYk33OP/e8qLOXkxrNKqS6gS0Q6gAdjZFli/7wW+LuI3AfcF/O7TcD0JN9vMBgMhsmJ0VMGwxhgDCyDYewYAFBKRUUkpIY2PEaxnj0BNiilTh2lnT4gd7TvASIkfqYHYn6OxvzfkQXg3cBZwMXAVSJytJ3ukWvLYDAYDIY3F0ZPGQxjgEkRNBjGjy1AlYicCiAi2SKy2OW6TcC8sRRERHxAjVLqWeAbQAlQaH+8AFg/lt9vMBgMhgmJ0VMGQwYYA8tgGCeUUkHgCuBHIrIGWA2c5nLpo1geu7HED/zNThN5A/i5Uqrd/uwc4OEx/n6DwWAwTDCMnjIYMsOUaTcYJgEici/wdaXUtsP8vVOAfyil3n44v9dgMBgMkwujpwyGIYyBZTBMAkRkITBFKfXCYf7eE4GQUmr14fxeg8FgMEwujJ4yGIYwBpbBYDAYDAaDwWAwaMLswTIYDAaDwWAwGAwGTRgDy2AwGAwGg8FgMBg0YQwsg8FgMBgMBoPBYNCEMbAMBoPBYDAYDAaDQRPGwDIYDAaDwWAwGAwGTRgDy2AwGAwGg8FgMBg0YQwsg8FgMBgMBoPBYNCEMbAMBoPBYDAYDAaDQRPGwDIYDAaDwWAwGAwGTRgDy/CmQ0QeFZGPj7MMdSKiRCRrPOUwGAwGw8TE6CqD4c2LMbAMkwIR2S0i56VyrVLqAqXU7R6/7xoR+ZuXNlL4jg+LyEoR6RaRA7ayPWMsvzNVROQTIvLSGLXdHfeKiMgvklz/fyJyUEQ6ReRPIpIzFnIZDAaDV4yuOrxMFF1lyxGJu/7ssZDLMDkwBpbBMA6IyJeBnwLXAVOAWcCvgUszaGuE53EieyOVUoXOC5gK9AF3ul0rIu8CrgTeDtQCc4DvHS5ZDQaD4a2M0VWp6SqbV2J/Ryn13GER1DAhMQaWYdLheKxE5GYRaRORXSJyQcznz4nIf8X8//+JyCb72sdFpDbms8Ui8qSItIpIo4h8S0TOB74FfMD2Qq2xry0RkT/aHrwGEfmhiPjtz/y2PC0ishN4dxL5S4DvA59XSt2jlOpRSoWUUg8qpb5mX3ObiPww5nfOFpF9Mf/fLSLfEJG1QI+IzLPTPD4pInuBZ1L425WIfFZEtolIu4j8SiyOAH4LnGr//e2Z3amUeC/QBLyY4POPA39USm1QSrUBPwA+MYbyGAwGgxaMrnpL6SqDYRjGwDJMVk4GtgCVwI3AH0VE4i8SkUuxFNDlQBXW5PhP+7Mi4CngMWA6MA94Win1GJa37l+2F+oYu7nbgLB93XHAOwFHOX4KuMh+fylwRRLZTwVygXsz+Ltj+RCWciy15QJ4G3AE8K5kf3sMFwEnAkuA9wPvUkptAj7LkDeu1O3LReTXtrJze61N8W/4OPAXpZRK8PliYE3M/9cAU0SkIsX2DQaDYTwxuuqtoasAjrMN160i8h2ZwNE5w9hjDCzDZGWPUupWpVQEuB2YhpW+EM9ngeuVUpuUUmEsZXSs7R27CDiolLpFKdWvlOpSSi13+zIRmQJcCHzJ9uI1AT8BPmhf8n7gp0qpeqVUK3B9EtkrgBZbHi/83P6+vpj3rrHl6yP53+5wg1KqXSm1F3gWODbVL1dKfU4pVZrgtWS037fleBvW/UtEIdAR83/n56JU5TQYDIZxxOiqt4auegE4CqjGinZ9CPhaqjIa3nwYA8swWTno/KCU6rV/LHS5rhb4meOtAloBAWYANcCOFL+vFsgGDsS09TusyRQsr2J9zPV7krR1CKjU4N2qH+W9ZH+7w8GYn3tx78Ox4qPAS0qpXUmu6QaKY/7v/Nw1ZlIZDAaDPoyuegvoKqXUTqXULqVUVCm1Diu1Mll00PAmxxhYhjc79cBn4jxWeUqpZfZncxL8XnwaQD0wAFTGtFOslFpsf34ASwk6zEoi0yt2W+9Jck0PkB/z/6kpyBj/XrK/fTSSpUEAICK/lZFVlpzXhhS+42Mk9wgCbACOifn/MUCjUupQCu0bDAbDZMHoqsmtq9zkGpEKanjrYAwsw5ud3wLfFJHFMLj59332Zw8B00TkSyKSIyJFInKy/VkjUCciPgCl1AHgCeAWESkWEZ+IzBWRt9nX/xv4oojMFJEyrMp3riilOoDvAr8SkfeISL6IZIvIBSJyo33ZauBCESkXkanAlzT/7aPRCMwUkUCSv+OzanjFpNjX4kS/Z8tyGpZ3MllFJoC/AJ8UkSNFpBT4Ntb+AoPBYHgzYXTVJNZVdp9MsX9eBHwHuD/Fv8HwJsQYWIY3NUqpe4EfAXeISCewHrjA/qwLeAdwMVb6wTbgHPtXncn0kIi8bv/8MSAAbATagLuw8ukBbgUexyrC8Dpwzyhy3QJ8GctgaMby4H0BuM++5K92W7uxlOW/0vzTk/7tKfAMVvTooIi0pPvdKfBx4B77HgwiIrNsr+IsAGVt4r4RK+d+L1Y6y9VjII/BYDCMG0ZXTW5dhXWUyFoR6QEewerX68ZAHsMkQZIXRDEYJh8i8gLwB6XUX8ZbFoPBYDAY3DC6ymB48zLqxkURqQZOx9oY2YflWViplIqOsWwGQ9qISD5WrnqywgkGg+FNhtFVhsmE0VUGw5ubhBEsETkHKze3HHgD64C1XGABMBcr5HyLUqrz8IhqMCTHXmBtBx4E/kOZ8KzB8KbH6CrDZMPoKoPhzU8yA+sm4Bf2mQPxn2VhncvgV0rdPbYiGgwGg8HgjtFVBoPBYJhoJDOwpiqlDrp+aDAYDAbDBMDoKoPBYDBMNJJVEVwtIk+JyCft8sgGg8FgMEw0jK4yGAwGw4QiWQTLD5wHfBC4EHgV+Cdwv1Kq77BJmAKVlZWqrq5uvMUwGAwGgyZWrVrVopSqGu06o6sMBoPBMF4k0lUplWm3D3C7AEuBnQM8rZT6iFehRGQ30AVEgLBSaqmIlGOdo1CHda7C+5VSbcnaWbp0qVq5cqVXcQwGg8EwQRCRVUqppWn+jtFVBoPBYDhsJNJVKR00rJQKYh1YtwnoBI7QKNs5SqljY4S7EkspzgeeJskp4waDwWAwOBhdZTAYDIaJQFIDS0RqRORr9ungD9nXX6KUOn4MZboUuN3++XbgPWP4XWmhlOKPL+3i189tZyAc0dp2U2c/1zywgdd2t2ptF6C1J8i371vHQ2v3a287ElV8/8GN/O75HYQi+o+b+dure/jhQxtp7hrQ3vbK3a186951bNyvv3rzwY5+vnXvOp7YoH/vfSSquPbhjfzxpV2Ex6DP//jSLq5/dBPtvUHtbS/b0cJV965jW2OX9rbrW3v51r3reHZzk/a2Q5Eo33twA7cv200kqr+i8m+f38GNj22msz+kve3ntzbznfvWs7O5W3vbu1p6+OY963hxW7P2ttPB6Krh/Ou1vfz0qa30DIS1tnv3qn384cWdBMN6552tjV188561vL43aQAwI/7yym5uenwzHX16n62OvhDXPLBhTPTq81ub+fZ969jd0qO1XaUUv3h6G797fof2e7irpYdv3LWWV3ce0touwJ0r67n+kU0c6ta7DugNhvnOfeu5c2U9uivlr9rTxtX3r2frGOi6W1/YyS+e3kZ/SO869EBHH9c8sIFnt+jXoU9ubOQHD22ksbNfa7vBsKWb//rqHqJjoJu9kPCgYRFZBswA/g18Sim1agy+XwFPiIgCfqeU+j0wRSl1wP78IDAlgXyfBj4NMGvWrDEQbSS7Wnr4wUMbAdjW2M1PPnCstraf29LMbct2c9uy3fz7M6dy0uxybW0/tbGRv726l7+9upfOvjAfPllffzW09fGnl61zErcc7OLHGvsE4IcPb6Q/FOW5rc089D9nkJvt19b2H1/axaPrD3Lv6w08+D+nM6+6SFvbD63dzz+W7+Ufy/fy0w8cy3uOm6Gt7Y37O7n1RavPdzR3c91lR2trG+CWJ7bQG4zwwtYW7vv8aeRk6evzW1/YybNbmnlg9X4e+uIZ1FYUaGv7/tUNg33+2/84gfOPmqqt7Tf2tvPnl3cDsLe1l+9cdKS2tgFueHQzAMt2HOLOz55Ktj+l5IKU+M1z23l1ZysPrt3PI188k+mledravmtVPf9csZd/rtjLn//zRM5ZWK2t7VQxumo4Xf0hvnH3OgDW7uvgjx9fiohoaft7D26gsz/Mxv2dWuf625bt5p8r6rl7VQN3fvZUjqkp1dJuOBLlu/dvAOCVHYe487On4ffp6YvntjQN6mzdevXXz25n+a5WHlt/kIe/eCZTinO1tFvf2sctT24FYGtjN7e8/xgt7QLcsWIv/1pZz12v7+OvnzyJ0+ZWamv7+w9tpKs/zPNbm7n/C6dr00kvbmvhr6/uAaClO8h/nz1XS7tg6brHNhzkntcbePB/zqCuUo+u6+wPce0jmwBYs6+DWz92grbn+8E1+wfH9O8+egLvWqxPh17/6CZ2Nvfw5MZGHvriGRTnZmtpd9WetkHd3NDWx5UXLNLSrg6SafErgTql1NfGSGEBnGF7GC8APi8iZ8V+aB++52qSKqV+r5RaqpRaWlU16j5oLRzssCzvpbVl3PtGAzs0eoSdiFhuto9rH96orV2AfrvthVOKuOnxzVq9msGI1XZtRT73vNHAun0d2toGyztxzMwStjd18zd7ItTFQDhKVVEO2X7hpse3aG8bYPH0Yq5/dJPWiKfT1oIphfxj+V62HNTrIQtHFXMqC9h0oJO7VzVobXsgHGV6SS5RpfiJreh1tg1w5LRirn1ko9boXmyf//nlXVo9y05EbE5lAavr23lwjV6P+EA4ysyyPHqDEX7xzDa9bYeiiMC86kJ++NDG8fIgGl0VQ32rVdfj2JpSntncxBqNc3LYvr/3vNHA2n3t2trtGQhTkpdNaX4219mLRx0E7Tlg0dQiXt+r99kaCFltz64s4KbHN9Mb1KdX+8NRZpTm0dEX4pfPbNfY7pC+vvv1faxv0Dc2eoMRAlk+ZpTm8cOHNmmNCA2Eo8yvLmTzwS7uWFGvrV0nAjS/upCfP71Na4RsIByhoiBg6bqn9Ok6Z9zVlOfx1KZGlu3QFzHst9teOKWIHz68UWu2xkAoSm1FPntbe7nNNoh04NzDBVMK+cOLO6lv7dXWtlcSGlhKqReUUkpEZovIj0XkHhF5wHnp+HKlVIP9bxNwL3AS0Cgi0wDsf/XHKjOkN2jdyM+dMxefoHeytheHnzt7Hmv2dbD5oL60NScV4KvvWkhbb4inNjVqbNt6AL9wzjzyA37++dqIsz4zJhJVRBWcd8QUTqgt486V+7S1DVbaV01ZHh85pZYnNzZqnVyddMmvvHMBjZ0DvLC1RVvbzqLhy+9YQLZfuGuVPoWjlCIYjvLuJdM4cloxd2i8n2D1y+yqAt63tIaH1x3QmhIXjEQJZPn4wrnzqG/t49Wd+tJtnfv5tXdZ3rF7Xtc3Fp2233vCTOZWFXDHa/rup9P+wilFXH7cDO57Y7/WtJJQJEpxbjafO3suO5p7eKNef4rXaBhdNZw++/5+6sw5BLJ8WvVUMBzlo6fUkpvt498r9Y3TUMRydn3i9DqW72plzyE9DoyQrZ/et7SGuop8/qXx2RqImePbekM8uVGfXg2FoxwxrZiLj5nOfasbtDnonLXAF8+dT06Wjzs138PSvGw+fdYcNh7oZIPG1PtQJMr5R01lycwSrePO6Y+vvWshfaEID687MMpvpE4ooqirLOD9J9bwiEZd5+iLT505h7L8bO3Pod8n/M/bLR26fJc+4y0UiXLa3ArOnF/Jnav0pWQGY3RzOKq47w29TmEvpJKHch9WhaRfALfEvDwhIgUiUuT8DLwTWA88AHzcvuzjwP1ev0sXPbaHalZ5AYunl2j1HDiD5D3HWqlkz23Rt6chFLEG8mlzK6gqyuEJjYrAkbuiMMCZ8yt5dnOTtgfHmUiy/D4uWjKNLY1d7D2kzzsRDEfJ9vt499HTiCp4WuPenVAkSpZPOGNeFcW5WTyucS+Wcz+rinI5bW6l1vvpeKgDfh/vXjKNtfs6aNKYMz3Y50umEYoontc5zsOKgN/HuYuqycv2a+1zx5EwozSPpXXlY/IM5WT5uPDoaaza06Z1/1sorAb7vC8U4aVtOo19q+13HDmFgN/H4xv09UsG3IfRVQzYBlZFYYCltWW8vF3P/Y5GFeGoorwgwFnzq3h2c7PGud4aRxcvmQ7AM5rmYufZCviFi5ZMZ8XuVrp0LXTtxfnpcyupLMzhCY1jPxSJku0XLloyja7+MMs1OYscnVpeGOBtC6p4fEOj1oWuo09F0ObIjUQVSjE4Pjbs72R/u57TFxxdumRmKfOqC7UayUH7Hr77aEvX6VrTOUZhYU4W5x0xhWc2N2nb/+7I/PZFU8jN9o3BmLbWcvWtfWw6oCfzJmzfw9qKfE6oLeNJjQEEr6RiYPUrpX6ulHpWKfW889Lw3VOAl0RkDbACeFgp9RhwA/AOEdmGdbbJDRq+Swt9dgQrL+Dn5NnlrN7brm9g2w/NzLI8Fkwp1KYUYWhSzc32c8a8SlbsatVuBGX7fZy9sJoDHf3s0pQ+FRxsWwbzuV/V6FFxIh6LpxdTXhBgxS6dEQ9rwRDI8nHKnAqtxUscxR7w+zhrQRV7DvVq2zjq3M9Alo+3LbDSmV7RuGnZWZAfP6uMwpwszX1u3c/cbD8nzi7X2+eD/SK8bUEVmw92aTOCBu+n3eeRqGK5xn4JRqJkZ/k4eXYFgSwfKzT3S06Wj6LcbI6tKdUqdwYYXcVQGlhutp+TZ1ewpbFLS1p4MGZuOGN+JQ3tfezVlI7jGBQ15fnMKs/XVighHB3ST6fNrSASVazcrSfK6swJOdk+zpxfyYrdevVqtt96Zv0+0TaXOQZFwO/jzAVVHOzsZ1+bHmMlHFEEsnyUFQQ4clqxdqMw2+/j1LkVANr6Y2h8CKfNrWDVnjZtqeXOPTxuUNfpGdOx/XHmgiq6+sPatgk4zri8gJ8TasvGZE10xnxrXaFvTA9/xtc3dNCtubhPpqRiYP1MRK4WkVNF5Hjn5fWLlVI7lVLH2K/FSqlr7fcPKaXerpSar5Q6Tyk1rho7FidFMD/bz+IZxQQjUX3GRNiKePh8wgm1Zazd16F1svYJ+H3C8bNKae4a0DapBmMW+8faG5PXasr5j114zq8upCw/m5WaF4fZfh8iwnE1pbyhsYKVFamxNp4eX1vGnkO9tGhKQRycULKE42aVAmiT3bmf2X4fi6YWkZvtY029vjz9UCRKwO/D7xOOqSnRmlLmLNIAjp9VypbGLn3e6phJ/Dh7nK+ub9fSdjCm7aNmlJDlE637W4Jhq88DWT6Oml6sdZzH9vlxtaVs3N+hvbJVGhhdxdA+itxsH0dMK0Ip2KKhkllspPWE2jIAbfu7wvbiC+Ck2eWs3N2mRf85KYLZfh/H15aRpdVYGXpudetVZzFakJPFkdOKx0TmE2ZZ91BX5cbYueCk2eW8vrdNiwM61tF6xLRiinKytDlyBvVdlo8T68rpDUbYeEBPaqMz7w7qur3tetqNG3eg9x4G7OfwhNpyNh/s1KZDnQjn9JJcphTnsGqPpjWLk+nkE06aXU5Uweua2vZKKgbW0cCnsLxzTsrFzWMp1ETFyW3PC/hZOKUYgM2aPAfBsOV9B1g8vYSOvhANmsLgzsAGOG6WoxjbtbUN1gQ1v7qQ3GyftoWnk66W7ffh8wlHzSjRFlaGoZQygONmlbKjuUdbKV8rmmJVOjre6fMxWJAvnl5MwO/jDd1tZ/nI8vs4ekaJtrECQ1EmgONqyth0oEvbgjx2nB8/qwyl0FZ0JXZhckxNKSL6DKzYRWButp9F04r0G7VZthE0y3Le6PbSgtXnoYjStkDJAKOrGNr0nZvl54hplp7apOGeBIc5vIrI9ou2Iy6Cdko1WIWBDvUEtRzNMbj48gu52X7mVRdq6Qurbeu5zfLJoF7V6XRxntlja0pZ39CpxeCMNVYWTi0iP+DXtvC30uKtuWDJzBIGwlEtxYBCMU4/v09YPKNY27iLjegtmVkCoLHtmHVXTRmbD+rRdY7MOXZBkaqiHH26KBIly3GYzSolqtCy5lJK2cab2A7tMm3ritism6NnWPdQ1zPulVQMrPcBc5RSb1NKnWO/zh1rwSYiTiGKnCwfc6sLyPIJWzQVowhGYg0sSymub9D0oMcYEvOqC/GJVaJVB7ERrCy/jyOnFWv1AAGDinfR1CK2NnbpXRzafe4sRLY36ekXZzIBWDjVKv8+Fn2ek+VnTlUB2zS1PTh5+4eM/c0H9Ch3GB7ZWzStiEhUsbNZ04b2yNA4XzTY55ocIJEhI6ggJ4tZ5fna+jw29Qpg8bQSrQoiVtEvmlrEQDhKvbYIthrWNjAmZ5yliNFVxEaw/Mwsy6Mg4NcyVmPnHcfI2rBfnwMjEDcX69AjTgqYMy8cMa1Ym5PO8faLyKBe3aZRfzjP1YKpRXQPhNnf4T0NPN5YmV9dqE3nBSNqUJ86DuhNGhzQsY5WgEVTi9na2KWlYmkoJvpRU5ZPfsCvzWkeiukPR9fpqDwd6+wTERZNLdKqi5x+XjhFnw6N3UcH1ppob2uvFoMzHKObS/MDTC3O1XYPvZKKgbUeKB1jOSYFYdvLJiLkZPmZUZbHbk1FF5xwMgwtyLc36VMEzoOem+2ntqJAa9swtDicX12k7UDT+LYXTS22vGKa+nwgZrE/v1p3nw9NriV52UwpzmGbxrYhps+nFGlreyhlwuqXudWF9AQjHNS4x8uZZJ0+19Yv4aG2q4pyKM7N0rbgifXegyW77j53DPJ51YUc6gnS1qNnj1cwpl/mT9FrBMXOLTPL8snN9mlT9hlgdBUxEaxsawE2q6JAS1W+2IUdWMaKrr0f4YgadKQdMdWJunlvOzY6DHDEtCIOdvbTquHZCsVknTh6VddzFZsyqXOhG6875lUXaXNChWOcijod0ENp60MOy95gREs6ZjhiHTPht7dnLJhSpG1MB13XFxoMrLj+mF9dxPambk0G55CTclpJLkU5WVrHnaMrFkyxUpe19EdMlBosY3YyGVilwGYReVx36dvJRjg6NOkBzCrP11ZzP3YRlB/IYlpJLjs17u9yHkawFnBjEU0Ba2Jt6Q5qKQAQigxXjgs1RyVi841nlOVpXRzGeoJgaBLUQfxCZ351IfWtfVrOYYlve15VIaAvshc7zusq8/H7RGu/OIahiKUsdXqUYWicz59SyK6WHi17DEb0ebXV57rO2QvZm89j29bZL86iyu8T5lYVams7A0oxumpERLS2PJ89GvRUvJNhTlUBTV0DWgpoxDpeSvKzqS7K0TIvBOMWX46DQVckIV6vanPoxEawpljP7FYNi8b4uWbBlEKaugbo6PWeGh97D3Oy/MyuLGDLQb0RG7AW56BrX6EajASBFYXX0S4MX1/MrizA7xM9keSYNH6wdFFfKKJlS0msk1JEmD+lUIvBGXQZd6BnXRGM080LpxaxvUlfppMXUjGwrgYuA65DY+nbyUgwPJSfCpaBtUdXNMWuxuUwu7JAWwGNUNxif8GUQna39AwqTK9tw9DDPrfKWRzq95g6J6Hv1nVGSkxaiu7FYawhAdYkuK1Rl5dpuAdL62QVZzA7C3J9RpAaHOc5WX5qK/Sm2o3sc33RMRje56GI0rPHIG5BrLPPlVLD+qUwJ4vpJbljYjCDtfgZxxRBo6tgcGHh3Jfainz2tfZ5nnsG4gysugp983FsJBSsuV5H1C0ct/ia7cis4bkNRlScE02PXo3drwJQmh+gSrPBORj9mOI4XPQYK1n+4WsYPZHT4Y5Wx+mna+4NxMg8p6qA1p6gNoPTeVYCWT7qKvL1RiHjDXAtbQ85KcFyDOtMa3TGdF1lAdl+0SJzOG58zKksIBRRHNCQUuuVUQ2s2HK3mkvfTjrC0eGLidqKfDr6QloextgiF6DXwArGTSKzKwsJRxX72jR4NeMe9iEDS3/otzAni8rCHPa06CoNPFxBzq0qZGeLfs8+WA99XyhCk8aN29mD3jGrz3WMl3jvWGVhgOLcLI15+tERfa4rUhO/2J9dWUBbr57nMxSTSmK1rbHPw8Pv5/TSPHKyfFr6fOhcs6GxOLdaX5/HO2/mVBawv6N/XCoJGl1lEVt8AWBWRT7BSNRzmm98ZGy24/DSMB+HIops39AYnV1RoMlwG56aNLMsjyyfaGk7fr6ZU6VHr8bvVwGoq9AThYyPxOucx0Lh4TqvrrKAPa29ng37eIdiSX42pfnZ2gz7WKd5rW2A72nVM/ay49ZdumSGWINCr/4ftsatzKelO+i57Hm8zNl+HzVlegIUsVWyYege6nLEeyGVCJbBxjojYHgEC9ByFkistwMs5dXeG9KyDyO+7doKfXLHRzxqyvPJ9ouWwgXxnhqwFM0uTQ/OiMmkIp/97f3a0r6GpZM6E7cmxQ5Dk9XgONQxWcXdTxFhdpUexRCJKiJxaba15fnsbe3VU5I5zpEwq1yfsoxPJanV+OzHG8x+n1CnbYE5vG2wxouu84vivfizNM4thswI26lrQ2PVmXu83RNn3nEK4NRVWvd6lwanVDhuvqyrtFLNvZaIji1iANah9TPL8jQZhWOjV+ONQrDmMi3RoDjdMaM0D5+gZatDvAO6rqKAYNi7Ye82h9VWFGhbnMfLDN6fFXBfX+jQdfEGZ2l+NkU5WdrWocP1s9UfXtcW8XshwVor6tHN0WGR06HI+vjrIGNgpUEoOlSGFDQv4MIjQ9WAln1Y8Z4UnYvD+PQmv0+YWZbPXi0eoEQTq/e2lVJ2nw83mCNRpeWU+FB4bPvc75NBj01ewE91UY6mtodvggbbe6pJmQHDUhBqK/IZCEe1RPZi9xo5bYNGB0jM/SzNz6YoV5dSGyq761Crqc/j9804bbf3hrQcSeAcNDzUtr4FiiEzYstlw9Bz4HURHXtmEFh7hacW57JLg7ESn15WZ8vsdRy56ZA6Tdkh8XuwdM3x8Q4XsO5hY+eA58hwvPEWyPIxvTRPU3RMER91A++pfPEpguDsK9SzNgrEOZ/AuyM0Ps0TrHvYH/Ku6wbijGSrkI0uHT28P2or9PRHfGaM0/aeQ94NznCczNVFOeRm+9ijKQPMC8bASoNw3AKupjwPgPpW7wvy+BRBx3jT4VmKVwRVzgDUuICLj+zp8gABw0L4dbai8VrQIb70K8ROrpq8VzH3c0aZ5SnUtSCP7W+w+1xLNMVS4PHKbH97n+e9BfGbUcHyYoE+I8gtwqzP0znUtohoN4LcvJ1e02vcFmtOv4zF3FKraYFiyJz4+WFaSS5+n2iIrIx8fusq8/VEsKIj08vAe9qTu8PIig7riCTEPle69Gr8fhXQ5yyK34MFGvV13B712ko9kYSwi8x1Ffk0tHnXSfHzV17Az9TiXM8yu6V56sp4indqgzU+xmI+dzISvK4t3Mb0rPJ8uvrDtHtM4Y+X2ecTassLJkcES0ROF5EnRWSriOwUkV0isvNwCDfRCEWGDkMEKMrNpiw/W1uaUOwDM7PMMt50pfHFPugioi1NyMl/jfc+7tXkmYB4hW6HrMdkktLTttN+7GSS7bc9hZoUWWyfgDUR6kgRDA6G8mMn2QKiCs97C0Ku0ZSxS8koyMmisjCgJ3Uy7vkEfal28SkfYPXLQDhKY5fX9JqRz9AsTSljMLzqFAxF9sYjgmV0lUX8wj/L72N6aS71Hp9ft2hoXUWBnmcgnCDNx7OBNTxFEKz0+95gxPNBxvHpsY5eHYuom655crBt30hnjlfio/zTinMJZPnGKPqhSSfFpZdZbed7ltk9zVNTVNbFIVdTnk99Wy8Rrw65uPm8ODeb8oLA2I5pDWu5sbiHOkglgvVH4MfAGcCJwFL737ccobg0BrAeGi3FIuIWzbnZfqYU52jzSoxcHBZoWpAPfyDBWpB3DYRp0+CZgPjNvpoUr0tOcHVRDoEs35jkMoNmRRZ3P2vLCzjY6b24gNPnOXEpgqBjIhzZ584egLFQ8OBE9nSk8KqR47y8gH06lFoCjyToU8bDouM692DGnPcGMZG98dmDZXQVw89QctDhDHAfp7r2Sg2XOS9g6T9dnvP46DBomM/cHF3lBZ51tptu0hUZdpzEPl9sJMGqnOf1HsYfY+PzWQanrihkrFHo7P/zuk/VbV6vrcj3nPbqljkwsyzf0nW6jLdhmQNO5Txv2VTx1TzBmTv0ODpcn0MN9zD+OXQKrHjVzV5JxcDqUEo9qpRqUkodcl5jLtkEJD4qAZbnQFeUaew85O6TiI4Nl/GRN9CrDCA+mqJn4enmFXMUgq7Ssm4L8rEy3mZVWBFPr8a+W7raYJ9r8ibHth3I8jGtJM+z0oGR+97AWgBqSeF1Md5qK/K1KLX4QjEQW5hAf58X5mRRURDQtk8yvl/ec+wMzppf6bntDDC6ipGV0QBqyvI9PwcDLuN0dqX3+VgpRSg6UrfWVRRo278TX0AK9ETHYveTwpDO9qJX3XSTrj2fidYCoCErxMXZWqfBqei+d1dPRC8+NdVpu6Xb2/lubilxjq7zatgnc8h5LkYRGWms1Fbkey4KE3QrclGmR2aruEr8PczXUmDFK6kYWM+KyE0icqqIHO+8xlowETlfRLaIyHYRuXKsvy8VwtGRociacisX2KulPOBiYFlKUVeUaaQi6AtpSJNw8eJpyxd3WeyX5Fkha8+eK5cJEBwFqWdPnZsi0+EpdI0aakr7cluQVxXmkB/we1YMAy779UBvqp3bgmd/Rx8DYY+RPbf7qal6o1ufTy/NJcsnnu9noj7X5RiKz38H+K8z5/BfZ87x3HYGHHZdNRH1VCg6cpFUU55PS7e3vavuBVO8l0R29qvE61Zrr5SeZys2RXBGqZ5S7YmyFLzqVbfFuYho6Y9EawHwPo8FXeZfHfvd3ObHioIAhTneU5Hd7qFjgHtp201m0KPr3NI8de7vGmGslOdzwKMOHdqSMXy/m47iXG4pgoPVIMe50EUqBtbJWKkWsYc33jyWQomIH/gVcAFwJPAhETlyLL8zFeLLtIM1sMNRDV7suGpcYCnFA539mjZyjtyzA3oeyBGGoa5cY5eUMtDjUXHLYwZ7AtSwAdqK7I2cqEBPv7h5bPS0PXIRNbhnT9vm7bFJnUxk1CoF+9p0pE6MNFJA4wbgmD53yklrS5GKjzJrrAwZ3+fjyGHVVRNXT7lEsAYLm2T+HLg9vzrmHafgULzM1hk8A57O4Bk6S3Hks+XVWBlwTY/3PicMGYX695WEoy4ZJxoLGWTHy1xZQH8oSmOnF4Nz5D5SEaGuMt+7kRxWI8ddhff0Q7c0T6dtHXo0Ps1zWontkNNiYI3MAokqPXOHW394Pz5iZFS2TlOBFa+MqhmVUue4vM4dY7lOArYrpXYqpYLAHcClY/ydoxKKjhx8TpjTa/qFWySoptxaHDZ4LBvult6k66wAt0VtbrZViUfXYj9+ApytoVS726IWrAe+Jxih1eP5Y8mMWh3pjfFtVxQEKAj4PfdLfAlYh9oKDcosQZ/PqrAOM/SSkgGJ0/hAT5nZ+D6ZXppHwO/TsA8gUZ/rGOd2CXiX6Nv+9r7Be5IJ0ahyTTkaL8ZBV01IPRV/HhHoqRzpFsHKD2RRXZTjKd3OrbooxJ5J5GGh63IEAuh6tlzmGw1OtEROkbqKAva1eXtm3dKoi3KzqSgIeOqPSFQRVSPn9jodxkqCdUCthhRSt3ldR1TWLc0TLF13yGMWi9uc6zgNPEch3dI8K3U8h4l1nJ5I8vCxoavAilcSakYR+Q/73y+7vcZYrhlAfcz/99nvxcr3aRFZKSIrm5ubx1gci3BEDUs1AH0lj93TvsYuyjSzLA+/T7TkuMcPbsA+l2GsjKAC9nd4K+jgtgkVhvrcc2qKaz66nhPG488eAsejV8AuTVFDt8VOfVufp7LhydImQE/0LVGfe9207LaY8vuEmvI8DUp+5KZl0HNOSKLFWk15vl2Fy4NXMur+fB5uxlFXjaqnbLkOq66KP1MK9OgSNwML8HwotlshFoiJJHh4dhPNObMrC9jT4vXZGqn7asrzPetVt0quYC10I1Hl6Zl1Myictnc2619A6zCS3faoWm3nezc4XXRpYU4WVUU57PEw7gadZnHrxTmD+/+8tR1vbIKe892CLsbKbA1HJiRKVZ9dWUBTl/f9bvFjQ1eBFa8k04wF9r9FCV7jilLq90qppUqppVVVVYflO90WcNNKrTNGPJfATVAGGvQYb/EPZLbfR01ZnucBaO0d8494v1bDuUwJPZuVGr2xCfKv9Riew9suyLG8vZ4nQRfjDSzZPS/2E+2T0rBpNFF0bLDPNXhQ49suLwhQnJulpV/cDAmrz/XsixAZ6aH1ek5IouiYc5C5l35xq2Y1ThhdFUPYpRhTWX42BQG/NwMrEkWEEU5GK1XLixHknk6lwyHlHCPi9410XnQNhD1lKrjNCTr0qqP34hf+TkERb8ab+zzm1Uh2O18LrCh/tl88jo9Eac4FhKOK/R4yfBLp0rqKfHZp6I+cbPdokJe2B8JRclzWXLMrve93cxsfZRqO3hhabw2XW4fuTzym9aTBeyEr0QdKqd/Z/37v8IkzSANQE/P/mfZ744qbgZXt9zGtJNeT4opEFZGoGjFInLLhOgwstwdSl8cjXpmDpcCau6xN1fmBhMMsedtJUqfAijLNn5LZ+slp223fm98nnvolGlWue+rAmlB0GFiJFvuPrDuQ8POU2o5E8Ptk5LkS5UMT4fTSvMzaDidQOvb93Nmc+YGlzgbc+LZFRE+fR6KUJTBqX9zWQjSqhuXEp9V2gueztnwovaasIJBR2wMJxvnsykIAdjR3c86i6szatiPIbrIfTsZRV01YPRW/f0dEqPF4pIiTxu7mCGju2kfPQJiCnPTn+kTzfIETSfC40HVfQA/NZxWFORm37bqw8zjfJFqM1lYMRRLOybDtAZetCGAZb3e/PpDxPUwUhbSi/PljkkIaG1lx+iZdEu0hra0o4MVtmUebE93DwYwKD9FCS1+MlHmOfb5bU9cAU4pz0243HIlaaZ5xMjs6VIcB7hb9Biuit3h6SUZthyJR1zFbW1HAS9u96WavJEsR/LaIlCf5/FwRuWhsxOI1YL6IzBaRAPBB4IEx+q6U6Q9Fyc0euZiYVe6t2p+zOIxv2+cTZpbleY6ODSR4IHV4PAZCEXLc+kTDob2hSBS/T0Z4H2drOAtrIIFCyPb7PIeWE3mvQE+UKdH9rHM2o3oYLwMh97Z1lIF1K/MM1kJqanEuO7UsSsbGqB0IRV3vZ12ldSCwt8heJHmfa5hb4sd5eUGA0vxsLeN8AqQIjpeumsB6auQ98Vo5ciDsrv+G0sAyaztR9MNq21tBo5DLGTmgJ/1wIBQZsRgF73o1kSOqoiBAUU6WZ4MzkVEImUcSEkUhwXs1yMSOVh373UY6tsEad42dmVfdTJROm5vtZ3pJrmdjJdk9zDTVM9l87jnCmSi92I7K7mrx4lxN3B/9oShNHitleyGZZlwHPCgiT9ulb78uIt8Vkb+KyDrgYmD5WAillAoDXwAeBzYB/1ZKbRiL70qHvlCEvICL4irzVtq7P2QNvlyXQWK17S06Fo6qhCFlryfaJ1rs69ns664cS/KzKc3P9vTAD3n23fvFy2I/kSEB1kN/qCdIR5+3tC/XCFaVBu9YgsibjlQPp1/cFn9ejaCBBIsSsPp8f0ef5z17rsZbhff89EQeyZryfEQ8LgITRLBAQ5+HErd9mBkXXTVR9VSirAHLEdiX8cK/P5TcEZD54jzxfOl1E7zbwakwdOjrWBgrsZGEzNq1nSJx/aFjn+1AKJIw+wEyn2sS7cGCoeqHmY67RI7WqsIcCgJ+z+uARHvSIHPn1uA9TKCnvTkTIwkdiZC5LkpkBIFlcDa09WVc0TrRfvr8QBZTinM87ZF224MFQwVWxnMfVkLNqJS6Xyl1OvBZYAPgBzqBvwEnKaX+Tyk1Zjt2lVKPKKUWKKXmKqWuHavvSYe+YIQ812iNtzNGhtKb3KNjXqIGyR8a2+PhcWHr5tXUEfFwO7NjqP0CPTnBCffV9GRc0GHIA+luvIHHPPqI+7632Rr2LFgRrJFt+31iG/v6U1/AUjp60mrc76dS3jf4J/MaejUO3cbKYDVOHX0+BgbWRIlgjaeumqh6ym1OrinLoy8UoaU7s31HCSNYnqMfiRfnzib4THWrW4UxsMbszLLM9445FTRdMwk8RhIcx4Xbc2UdUaLfgeZ1v1uyKOSgI7c7Q4MzQVqjiHheB4QSbHGo85glM3gPE2VUNHd7inC6ORKnl+QRyMq8qm3StWKlt+yYZPrZc5GchFFI7wVWvDKqZlRKbVNK3aaUul4p9VOl1ONKKe8nsU4ylFJ2BMvdMwiZR2sGI1iuaR15dPaH6chwo3uivUagZ7GfKL2pNN8qLuBpcZjAQwh26ognz5Wzf8S9X/pCERq7Mkv7Gq1t8GoEufd5mYa0r4FwxHXyBqcypPd0Nbf251QW0N4boi3DTefJnBS6qiC5GZ5Ti3PJzfaNyTME3s9NSRapnVNZwIGO/swdQ6HEbY8HRldZ9IYi5AfcHYFAxk6SROO0MCeLysLMq64lKmIA3tPAguGR+9Fi28508ZXMueB1jh+t7X1tvRlHEhIZK14LMCVK44OYPdMZjw/3SsVgF1gZg6IfQ1FZb2mvrhkVFQV09odpy3RNlyBi4/MJdRX5mRv2SdaKdR7XiomKZ4FVcMnrPXRrd1pJruesG6+Me27HZMEZfG4RLKciV+YDO/Fm8cFKghl6DpItap1zfDxVy0mw8ATvUSYrJcW97bqKAva3Z366eKI8dxgqpZppql0yo3aWnfblpSRucsPTe6pdwsV+ubey4akY+5lGU0dLywTvaXxufW4ptbHscz37F9z73Cp0kenCJ1kajGH86A26G1hzBgubZDZWE+1BBm8Or54BaxwVuMjsNZLQEwxTmKBog5fnNlGlPxiKJIxFqpZz6GumxUqSFUDyUpyjN2jdQ7dx5/UsrP4E+7zB6o/6tl4iGWSbKKVsp8HItp2zwTKOYCXRR8560cv4SHQPrayEzPYzJRvTdR5T4QfsNUt8gRyn7UM9QTozPBusP8E9zPL7qCnzZoB7xWjGFHFufmFOYsWVaRW0vqBT5MJ9HwZkXpK8z953kpsg7WtmubfD6azJL3HEw0taVld/mKJcd+U4yz7HpyHDM0GS9Uudx8V+b9C9aInz3rTiXE9FUXoTpKqC99KkyYza2ooCuj2UNh7s8yRpRplO4M4zlOei4ItzsykvCGTcL4PR64RK3tuRBMn63Ek/zvSckL5QBJFEhqe3HHVnnCfqF8PhJxSJEgxHXfdg1ZTnE/D72NGUmZ7qDYaTPAOZp/l022O70GWuHzycPcPnq2cgQoGLzgbrue3sD9Pem/585jyPbv3snMGTaXTM6Y9814IiXvsjcZVAL7rDkdlNX08vtc7czHSdkWwdUFueTyiSWan2nmCEqHKXGbxlbPTa/eHW17PKnf1dmY6PSJJ7mPl5lc6YLnAZ006p9kzXc939YYoSyOxlO4lSymo70fjwqJu9YgysFHEWleUFI0u65gX8zCjNY0eGBla7XfCgJC97xGc1Hg+I7EjSNgxFJTJBKUVHXyhp2w1tfYQzPAhwtAcHMlc0Tr+4tT+1OJeA35dx1LBzlD6f5eGhD0Wi9AYjidsuz+dAR+abUZPeT49pEx19IQJ+n6uHbGZZHiKZOxJGG+dWBbXMFzyRqEra5/WtvRnv2evoC1OcoG2vFdo6+0IU5WS5lqn1Gh0frc8Nh59BPVU4sqy/32eVW85YT/WGKMlPPDc0dg5kVEhm0MByWYAV52ZTlp+dsf7rGghTmJv4uYXMdGtnnyXzWOjVzj4r6hZ/VAbEGJwZOkU6+8MUJ+iP2oqCjJ053f3OPRzZdrbfx4zSvIx1Xmd/iKJE99BDCqkjc6K26yoKPKy7rLaLXdYXNeWWrvMypye6hzXl1nmVmWxvcMa0my6y9rt5GNP9iXXcrPLMU2r7Q1HCUZXwHtZWFLDXY6VsL4xqYInIArs603r7/0tE5NtjL9rEorXbMbDcz6OZU1WQceqF40ErzR/ZdnGuVTHPs4GVUDEWUN+aWdpXbzBCKKIoTbIgtw4CzGwvU9dAKGF6xyyPRTTae62Fp5sSGyyPn2GfJzOYAdu7OTaL2ll2CklDhocvtvclX0RB5p63DnuB5pYmkJNlFXTIdLHvHMabcCx6KFGdSp8PhDMvB9vRG6R0jPq8vTfoOq+AtbAozc/OfJw7fZ5A9sON0VXQYhcSqHIxsADmVmeupzr6Qgmfr5ll1tl4+zLIKOjqT2xggbdjULr7Q65ZJxC7Jy0DA8vOaCnOc5fZKYmfiV7t7E/s5KoqzCE/4M/IWAlHonQPhBPK7MXg7B6wM3ySOET3eojouRkqVru2AyqD+bGrP7GTFaz+2N+R2TaEzv4QBQG/6/oiJ8vKYsl07dLZF0p4D73sWRxtTFtbPjI07PtCozvLM5DZuYeJxt2s8nx6ghEOeThQ3AupRLBuBb4JhACUUmuxzvt4S3GgwzISqovdDyWcW1XIzgwrw7T2WIOkLMFCqKYsn/oMU+Ecj2YixVhTbp1on8mGyzbbMExsSGQ++QEc6g4mPGB1UNFkbGAFExoSADPtksaZtT1K1ND2FGZSXKB9lD4fmqwyXZAnVu4zy/I9ed7aeoNJox01ZZkvpEYzamsr8tnf3j+4oT6ttnsdxZPYeIPM+lwpRVuSPvfioQWStg12ldIxMjzHgbe8rjpo66mqIveDRudWFbK3tTftRaNSitaexI4AJ9Mik71BTV39BPy+pF75TMdoU9cAVQkOEvZSnOqQ7XBNpLNrK/LpDWZWsbG1J/E8KSIZO+jaRnNCeZhrmjotw74igb72kqrV0j2QsJ+nFecSyPJlZKw4VQ2TyawUGa0D2noSO7Yg8+0TA+EIXQNhSvPc2/ZiJB8aXCsm6I/yfPZlmJHUmqQ/CuwiOWN1D8HbcUFeSMXAyldKrYh7L7MNAZOY7c3dZPtlcADHM7eqgJ5ghMbO9L3Y9a29FAT8lCVQXl48eI5HcXppnuvnXhaHo7btYXCHIlEaO/uZmaBtR9Fkqnjr2/oGva5uzCrP89B2L1k+oboouWLPpH1nsk8kuzcvpLW/KlHbzv6xTCer+tbkfV7jwah1nqFkC8BIVGW0Z8/py0Sye0lXPdQTpC8USdi2s38s07TM+rbe5H1elp9R1AGsPq8oCCQsfDAOvOV11dZGK/1vXnWh6+fzqguJRFXaz3Bj5wAD4WhC/VdT5qSbpj+W9rf3M6001zWNFaznK5NU887+EF39YaYl0CH5gcwXdo4hOdqckNkcn/yZrc1wcV4/KLP7Pay1HaKZrDX2d/RRWZh4Lqgtt6rEpnv+YySqONDen7A/fD6hpiwvI53k6IIZo9zDTPpjtHl3VnlmBqcjc6K2vex329faS8DvS7hucTKSnGBDWm2P0h+ZjunR+sPLPdRBKgZWi4jMBRSAiFwBHBhTqSYgb+xtY351kWsZUrA8g0BG+e3bm7qZXVXgmjoF1uKwoa0vo0o5O5q7qSrKSbgpcmqJ5enMxDB0/lanAtyIth3vUgaDe3dLD1FlpV8lYkpxLk0Z5BorpdjV0jO4v8WN6aV5dPSFMooy7WjqZlZ5vmt6AAz1eZOHPq9NIHtlYQ4+yaxtp0hLsn6pydDYtxZ1yft8RmkujV39GY/z2orEz9DUYrvPM0jj2znY5+4Lkyl225kc2O1UkxytzzOJDAyEI9S39iYcKwDTS3PZ357Z4bM7m3sGi5NMEN7yuuqNvW3MLMtLGAEZ1FNpFrrY2tgFwJwqd8OtuiiHgN+X0Tjd1tiVdIxOK8kjHFVpp/lsb3LmM/fn1mo7N6P9KjuauynOzUrYz86c0NSZXtvBcJS9rb0J5xqw5rJ024Whe+4Ut4mnOC+L3GxfRjp1W2N30nvoZP40p9n2nkM9hKMqeX+UZLYO2N5kOc2nlbgvzp172JhmXyul2NHcM4rMeRzqHkhb120f5R5m+31UFeZwMJPx0dxNTXleQkfH4JhOs68PdQ/Q1htK+hxOKc7J7B7aujmR4ydTmXWRioH1eeB3wCIRaQC+BPz3WAo10dh7qJeVu9t428KqhNfMrc6skmB/KMLKPa0srS1PeE1NeR5BO6KTDkoplu9s5YRZZQmvqbK9FS0ZHAK4fGcrlYU5Sb1LM0rzMooavLqrFYDjZ5UmvKaqKIeWDBa125q6ae0JcnySfqm000oOpZniEYkqXtvdynEptJ1Rn+9qZVZ5/uB9i8fvEyoKczJqe4Xd58eN0ueZ5DOvb+igJxhJ2nZlUQ5KkXaVwlAkyut72kaVGzLv8wVTChNupM3N9lOUk5WRgbV85yFE4Jia0oTXVBXmZJRq9MbedkIRlbzPC3MYCEfpCaaXMtYfirB6XzvHJZF7HHhL66pD3QO8uK2Fs5PoKadEdLqOwJe3t5DtF45NcL99PqGqKIfmNB077b1BtjR2JR1HznyZ7vP12qAOSTYXB9KeEwb1am1ZQodOpvPNmn3tDISjnFCbXH909ofTLiiyYlcrJXnZg1WP4xGx72Ga/dwXjLC2oSPpPXT6o7krvXnM0Umj9Ucmhxgv39XKUTNKEpY8z1RPO+uLZDJXFQaIKjjUk17by3e1EsjysXh6ScJrKovSH9PhSJSVe9qSy5zhPVyewj2sKkx/3IE1PuZWFSRMPyzMsZwGmbStg1QOGt6plDoPqAIWKaXOUErtHnPJJghKKb59/3pysnx87NTahNdVF1l7gtIt7X3P6w30h6K8a/HUhNdkmvb1yo5DNLT38fYjqhNe4xTtSPeBbO8N8uTGRs47ojqhkgFLgaU7iSiluGtlPXOrChJGx6y2rYVnut73O1fW4/dJUoO50t4knu7E/czmJtp6Q0n7fGiiSq/tpq5+nt/SzLmLErcNTr9k0Oer9nHktOKEHr3BtjOYrO5cVU8gy8eZ8xP3eUVBZgrt0fUH6QlGOO+IKQmvyVRZNrT3sWzHId6epG2w7mm6YyUaVdz9+j6On1WWsHgOZLYIBLhr1T7ysv2cOrci4TUVTr+keU8fWL2fYDjKuUnG+eHmra6rbn5iK6FIlI+fWpfwmvxAFtNKctPSU/2hCHe/vo8z51clzIQAe5ym6Ry5+/UGlIJ3Lk78fFUVpT8XO8/WMTNLqC52348GznyWnsyv721nZ0tP0jmhPD+ASPpz/N2r9pGb7ePUuZUJr3H0RzqOru6BMI+uP8jbF1UnjFDAkE5NhwfXWnPBO45M3B9O2lk699DRSXUV+YORVzecxXk664DtTd2srm9PqjNys/0U5Wal3R93r9pnrS8WjL4GSGfsBcNR7l+9nzPnVSZNy85E/z+1qYn23lDSMV2VwT0Eqz8qC3NYMrM04TWO0yCdvaGNnf28uK0l6T0UkYzGtC4Sz5Y2IvLluP8DdACrlFKrx0asicNDaw/wwtZmrr74yKQLTxFJez9DY2c/Nz2+mWNrSjllTpIIVtlQHukpcxIvlmLpD0W4+oENTCnO4eJjpie8Ltvvo7wg/QXcTY9voT8c4ROn1yW9rrwgkPY5O39fvpc1+zq44fKjRzXegpEonX3hpAUrYtne1MVfXtnDRUumDYaP3dtOP4LVH4pww6ObmFmWxzuTKJuCgJ/cbF/afX7dw5uIKMXHT6tLel0mXsg7Xqtn88EubnnfMUmvqywM0DVgeU9T3XuzYX8H/3qtnvceP3NUQwLS6/PugTA3Pb6ZuVUFvG1BYuOtvCCAL80Fj1KK7z+4Ab8I/3FKYucKZGZ43rZsN7sP9fL18xclva6iMEBrT5BoVCVdHMWyur6de99o4KOn1CYsHmDJbfd5z0DK6X4dvSF+/ORWjpxWzKkpzkeHg7eyrlrf0MEdr+3lP0+bzfwpRUmvrSnLZ18aex1/+tQ2WrqDfPqsOUmvqyzMSWt/RntvkF89u52TZpcn98hn4AS46/V9bG3s5icfSD6fWRH5gZSfrWhUcf0jmyjLz+Y9x81IeF2W30dFQYDmNOayzQc7uWvVPj54Uk3SwjGxDroZCfaXxfPzp7fRPRAeVV9XFeaktZ+pNxjmJ/ZccNLsxGuYTKKQT25sZOWeNq65+Mik64Cqohz6Q1YUPlElyniuf2QT+QE/719ak/S6dHVpfWsvt7+ymwuPnja4FcCNwf5IYw1w64s7aekeGPUeVhbmsPlAV8rtDoQj3Pj4ZmaV5/P2JM7bTJwGr+w4xNObm/i/8xYk3F4DsRHfYMpj+kePbcYn8JGTk+vmTNZDukglRXAp8Flghv36DHA+cKuIfH0MZRt3OvpCfP+hjRw9o4SPJfEKOswsy0vZwIpGFV/59xr6QhFuft8xSSeQ6aXWuQnpGG83P76FbU3d3HjFMaMuhCsLA2kNwGe3NPH35Xv51JlzWDS1OOm1FYU5aS2Yd7f0cO3DmzhzfiUfOHH0yQ+guTs1pR6KRPm/f60hP+DnqncfkfTaTCIeNz62hR3NPdxw+ZKE+69gyKuSTp8/vPYA963ez/+cOy9pVA+ciEfqfb7nUA8/eGgjp8+r4LIkiwYYinikmsbXH4rw5X+toTQ/wDdGMSQqM0irufbhTexr6+OG9y5JukDy+4TygvQ8e3e/3sDjGxr5yjsXjDrpVxYF0lKW25u6+NFjmznviGouOCpx9BqssRiJqpQ3iPcFI3z5X6uZWpzLl9+5YNS2Ib20j2se3EBz9wA3vDe5A2QceEvqKqUU1zywgfL8AP973vxRr59ZnpfycQhv7G3j9y/s4ANLa0Z17qXrOb/5iS209wa55uLFo7YLpDyntfcG+dGjmzmhtoxLj0k+n1UW5hCKpP5s3bmqnpV72vjmhUeMuphPpz+iUcVV966nOC+br7xj4ajtQuoL3U0HOvnjS7v40Ek1SaMIYKfdp3EPf/70dg509PO9SxcnnQtK8rLJ9kvKMvcGw3zvwY0snFLER1JwbkHq/fHkxkae3tzEl86bnzDVPrbtVOd1pRTfvX89fhG+dWFyXTcUwUqt7b2Hevn509u44KipSbNAnLYP9aQe0fv98zvZ2dzD9y5dnHTdMug0SFHmgXCEq+5dx6zyfD7zttGdM5D6PVyxq5V7Xm/g02fNGay0m4iqDLdM6CAVA2smcLxS6itKqa8AJwDVwFnAJzL5UhG5RkQaRGS1/bow5rNvish2EdkiIu/KpH1d3PT4Zg51D3DdZUfjT8G7NbMsj30pnn3xh5d28tL2Fq6+eHHCik8OgSwf5fmpL+CW7WjhDy/t4qOn1Cb16jukE0Lt6Atx5d1rWTClkC+/I/niDaCyIEBrbzClzZyRqOIrd64hyy/ceMWSURdvTvndVAsX/PKZ7axr6OC6y46mOkEZY4cK27Of6gT46s5D/OnlXXz81FrOmJ84vcMhnZSyps5+rrpvHcfMLOHz58wbvW1bKaQyDqNRxVfvXIPfJ9x0xTGjenEr0kwp/cmTW9nS2MWNVyxJWHLfIV2j9vmtzfxzxV4+fdYcTqxL7D11SMeT1dDex/ce2MBJdeX815nJlQOQlsEcjkT58r/XUJCTxfWXjz7OK9Lslxse3cTOlh5uet+SpNErSH+vyOMbDnLvGw38z7nzRl2sjQNvSV31wJr9rNzTxtfPX5hSyfyasnwOdvaPmo7TH4rw1TvXMKU4l6suSu6QAmvOPGRHWkdj1Z42/r58Lx8/rY4jpyd30hXkZJGX7U95jP7osc2094X4/qWLR53P0nHqHOoe4PpHN3NSXTlXHD9z1OvTmW/ueK2eVXva+NaFR4w6TzrPbCob96NRxbfuXUdpXvaoDi6n7dbeYErHWWw+2MkfXtzJFSfMHHX+FZG09tn87KltNLT38YP3HJU08uHIDKktznsGwlx9/3oWTiniP0+fPer16dzDR9cf5NktzfzfOxYkzXaCIV2XytrF2aaS7fdx9SjOCKftVJ0Gu1t6+MWz27nw6Kmcs3D0dO909NxvntvBzpYefvCeo0Z18qdzD4PhKN+6dx0zy/JSWg9VFuVkfEalV1IxsKqBWOlCwBSlVF/c++nyE6XUsfbrEQARORLr3JLFWJ7HX4vIuNQAfn2vpQA+cdpsjp6ZOH0hFudMKedE7ERs3N/JTY9v4V2Lp/DBUaI0DlVFOSlVhusZCPO1O9cyu7KAb47iRYltO1Xldf0jm2juGuDm940eGQNrcajU0PlNyfjDiztZtaeNH1x61KgTlCM3pObZ3Hywk189u533HDudC46eNur1OVl+inOzUuqX/lCEK+9ey6zyfL5xQYp9nkbu/9UPbKA3GOHHHzh2VGUDVr8Ew1E6+0evgPi35Xt4bXcbV1+8OGG5/VicBUkqUck19e3c+uJOPnRSTUqTd3FuFgG/LyXDs3sgzLfuWcfcqgL+77zRDX1wjNrR5VZKcdW964goxS3vPyYl50pVYQ5dKW48/+NLu1i7r4MfXHrUqB5UsJwUkNo4f213K7e/sof/PL2O05Ls43BIZw9mR2+Ib9+3niOnFaek2MaBt5yu6g2Guf6RzRw9o4T3nZCaLqkpt873Ge0A+B8/uZUdzT386L2jG+qQeqQ1FInyrXvWMbU4l6+8M3m0xiHVhe5ru1v554p6PnnG7KRph4PtppGqde0jm+gZCHPtZUellE6Yque8uWuAGx7dxClzynnv8ckjbhDr/Bt9PvjHir28sbedq959RNJzmRwqC1MrNBSNKr51zzqKcrP41oWjG9+Q+jpj4/5O/vDSLj54Yk3StMPYdiG1OewnT25lf0c/110+uuEGjp4evd2u/hDfe3ADR04r5hOjpPCD5TTID6TmNHC2qXzlnQuSph0OypyisaKU4jv3ryeQouHmtJ2KzDubu/n1szu4+JjpKTn507mHv39hB9ubuvnBe44iPzB6SmhVYQ5tKToNdJOKgfV3YLmIXC0iVwMvA/8QkQJgo2Z5LgXuUEoNKKV2AduBkzR/x6hEoorv3Lee6qKcUVNsYnGq6SVLv+gPRfjSv96gND+QkvfaIdWIx81PbGF/Rx83XbEkpcEHqVdwWba9hTteq+dTZ85J2XvtLOBG25C7u6WHHz+5lXccOYVLj028ZyyWVMPskajiG3evozgvm++mOJE47aeyqP3JU1vZfaiX6y8/OvU+T/F+Prb+II+uP8iXzpufdKNvfNsw+gTb0N7Hjx7dzJnzK1NS7BCzIBml7VAkyjfuXktVUQ7fTFEBO1WsUlk43Py4Nc5vvGJJynvBKgsDKSnL+1fv57ktzXz1nQsHD1AdjVQ3nu+yx/k7j5zChUcnTw10cIza0cZLfyjCN+5ey8yyPL72rtQWrunswbzukU209gS58YolKS1OxoG3nK76/Qs7OdjZz3cvPjLl/Xk1jp5KUjRp5e5Wbn1xJx8+eRZnpbBAgtSjQb9/YSdbGrv4/qVHpbxnJpWFXTBsGW4zSvP4Ugqpkk67MPp8tmxHC/e83sBnzpo76h632LZTKb5w7cMb6QtF+OF7Uku5zcmyzvsbLTW+qaufHz22mdPmjp76HSszjN4fd7xWz+t727nq3Ucm3Vcb3/Zo7cZG3K5M1VmZoszrGzr487LdfOikWZyQpGpzfNtdA2H6RqmyessTW2nqGuC6y49OmmYX3/ZoMqe7TQVSdxo8sGY/L25r4WvvWph0P3q6Miul+PZ968nJ9vGdFCLfMOQ0GK3t3S09/OKZ7bz76GkpOW0dmTOpTqyDVKoI/gArl73dfn1WKfV9pVSPUuojHr77CyKyVkT+JCJO/cYZQH3MNfvs90YgIp8WkZUisrK5udmDGCP5x/I9bNjfybfffWTKCgCGDvBLdhbITY9vYWtjNzdesSTliQmguiiX5lHKtL++t43blu3mo6fUsjSFlCmHqqIceoMRegYSRzz6ghGuvGcddRX5fCnFiAHEeNuSPOxKKa66bx0Bv48fXHpUykbnYF73KBPJn1/exZr6dq6+OHVlAKlNJuv2dfCHF3fxgaU1nD5v9IhBbNutPcm9Kh19Ib57vxUx+FQKaWqDbadgBDlRGgVcd1nqe2lSrST0u+d3sPlgFz+49KiUvN8OlSkYnqv2tHL7K7v5+Kl1KStKSG3Bc6h7gO89uIFja0pHLSYS3zaM3uffvGctgSwfP3hP6uM8VaP2l89sZ2dzD9ddlrqh77Q/Wtsvb2/hXyst58pRM1KL6B9u3mq66mBHP797fifvPnpaSimyDrNGOQS3L2ilBs4ozUs5OgFDleKSpePsOdTDz5/exvmLpyatOufW9mhpPre+uJNtTd18/9LFaTm6IPmzNRCO8O1711Nbkc8Xzk09cltVZB2B0JVEr760rYX7Vu/nv982d9StAsPaTuGZ/eFDmxgIRdOba1Loj3QjbrFtjza3/33FXlbXpx5xAyjLD+D3Jd/fFYla+q4sP5srU0iVjJUZkq9f1u5r5/ZXrHVXomMMXNtO4R7e/PiWtLapxMqcrO2OvhA/eGgTS2aWjFrAKb7t0bYf3Le6gWU7DvH18xeNuhXDYdBpMIr+dCJu3734yJRlrk7RAB8LUjK1lVKvAf8E7gWaRGTWaL8jIk+JyHqX16XAb4C5wLFYB0Hekq7gSqnfK6WWKqWWVlWl5mFLhbaeIDc9voXT5lZw0ZLRU8liqRk0sNyLUby8vYU/2nujUrW+HUYb2MFwlCvvXsvU4tyUvdcOqWww/PGTW9jb2sv1ly8hL5B6Jkwq1fjuWrWPl7cf4usXLEopBO6QSl53fWsvtzyxlXMXVXNJkmqKblQVJT/AMBSJ8vW711JeEEhrIWK1PXq/XP/IJg5lEDFIRSk4UZqvvSv1KA0Mla5NdtDl9qZufv605WV6Z5LjB9yoKsxJ2nZ/KMLX71rL9JLUozSxbTtVJxPx/Yc20j0Q5sYrlqSs0CA1pXbHa/W8urOVqy48ImWPIUBpvuVISDYWNx3o5LfP7+C9x89MOeLgUDXK4rU3GOab96xjdmVBypGB8eKtpKt++tRWIlGVsqffYUpRLgG/L2GmxY8e28zuQ73ceMWStByMox3Majl1rL0k11ySeiYBjO7scgy3C46aOuqRCrEU52YRyEp+Ts7gXpJLR99LEi8zJJ4T+kMRvnP/euoq8vlcmim3o2VXvLC1mQfW7Oe/z56bcuYDpObM+eHDG+kPRVOOuMW2nexw3abOfm5MM+IG9tmPBYGk8+Pfl+9hzb4OvnPRkSlXHIbRHYrhiLUfqKowh6+mq49GMThX17fzt+V7+NipdSlvUxkmc5J7eONjm2ntSc9wA1uHJtl+0N4b5IcPbeLYmlI+ctKoU++ItpPJPBhxOz/1iBtkfiyODlIp034JllKZDjQBs4DNWLnnCbHPIxkVEbkVeMj+bwMQm0g+037vsPG7F3bSNRDm6ouTV8Vxozgvi6KcLFcDq6M3xFfvXMOcyoK0F+NgWeGhiKK9N+S6CfbXz21na2M3f/rE0oQHoiYidhJxK9W8pr6dP760iw+fPCvpmTqJ5IbEXs2W7gGufWQTS2vL0n4gIbnitSIG6/D7hB+m4cUbbHuUB/73L+y0Frb/cUJak7bTNlgPvZtRuWyHlY75mbPSjxiMNqE4UZrjZpWmnHYQ334ixRCNWlGavIA/7UWU0/bq+raEn//q2e3saO7htv88MemZPInaBqvqpNv9emZzI/ev3s//vn0+C1JMAxrRdoI+b+zs57pHNnHqnIpRq2PGM5ojIWynY5bmZ6eckhFLdVEOK3YnPkrhx09sZW9rL3d8+pS0FpiHm7eSrtrX1stdq/bxkZNnpeUgAfsA+LI811Ltr+48xG3LdvOJ01LbwxeLM9c3JtgrfN/qBl7a3sL3LlmcliMNrPmyoy/EQDhCTtbwMeikJKVaBCCW0Z6t2L0kaTsunEIGnQOuRs6vn9vBrpYe/vbJk9N+rqqKcnhjb7vrZ47hNruygP8+e27a7UJig+KFrc3cv3o/X3z7/LQibmBlJ0TtVC23vafff2gjA6FoZro6yTqgsbOfGx/bwpnzK9N3so5icN7+yh7WN3Tyqw8fn1amhiPzsh2HXD8L2/sUq4ty+Eoa21TAchrkJHEavL63jX+ssI508LK2cCuo86PHttDeF+Kvlx2dcspybNuJxl1Hb4gfPLSRY2aWjFqWPZHMqRSF0U0qbvEfAKcAW5VSs4HzgFe9fKmIxIaGLgPW2z8/AHxQRHJEZDYwH1jh5bvSoblrgNuX7eaSY6azcGp6CyywJusZZXmuue3fuX89zV0D/OQDx6YVAXJINvFtbeziV89u55JjpnPuotS9dyPadnkgg+GhvTTpekrBSuPLzfZxsMM9qvf9BzfSMxDm+svTfyAheVWbu1bt46XtLXzj/IUpFXCIp6ooh54EqZM7mrv5me0xPX+UMtuJ2gb3EvP9oQjfvGcdtWmmYzqMljrpRGl+9N70ojQO1UkKrvx9xV5e293Gt999REoFHOKxSswGCbukTm460MlvntvB5cfN4Ow0I8BO2+Bu7HcPhPn2veuZX13I585Jb1ECQ4cku41Fpaw9ncFwlOtHOdstEVXFuQnH+Z9f3s3afR1cc8nilNNqhrWdJHVydX07f3rZcq6kegbfOPKW0VW/fX4HIvCZt6U/VsHaLxwfweoZCPO1u9ZQV5HP189PzxsP1sb9opws1whWW0+QH9ie7XRSkhySFTRyPNtfTbEIgFvbbnNlJntJ3GR2a3t7Uze/fW4Hlx47PaWqsyPaTnK47q+e3c6eQ71cm0L1tnicDAW3uSbWcPtcmoabIzO4z5HPbWniobUH+Pw585iTRsTNoTrJ4vz7D24kFMnMcEuWXnago48fP7GFsxdWpbyfNpZYp0E8ty3bzcYDnVxz8eK0HebOXmY3mWMLzKRTXyBWZnDvj1V7Wvnnir38ZwqVQV3bTmIk3/DYZtp6Q1x3eXoRN8jsDDZdpGJghZRShwCfiPiUUs9inTfihRtFZJ2IrAXOAf4PQCm1Afg31obkx4DPK6VSP9rZI795bgfBSJT/fXvmaTA15SMPG75/dQMPrLG8PsekkaMby2AkKG5haxVwWEthThZXp5GXGksyA+u39l6aa99zdNoeGrAe9qnFua4HUD67pYkH1uznc2fPS3njcDyJlGNz1wA/fNiOjKXp8YhtG0am2kWjiivvXktulo/vXZp+lCa2bbc+/8lTW9ljF83IxBhPds6WE6X5/Dnz0o7SOFQX5br2+YEOq2jGGfMqueKE0csYu5FoQ6oTpSnJy+Y7F2U2zpMpy5se28yBzn5ueO+SER7yVAhk+SjLz3ZNy3x0/UGe2NjIl9+xIOXDfOOpTqB89hzq4ZYnt3DeEdW8O4XqmG4k2isSDEf5xl1rqS7Kzci5Mg68JXRVY2c//35tH1ecMDMjxxFYeireEfhD+0y5m953TFp7+GKpLs5x9RRf/+gmOvpCXJ/BAslpF0Y+u5Zn29pL8tEMovGQeGGXyV6S+HbdZHb2v+Zm+/j2uzPX2X2hCD1xxRe2N3Xx2+d3cNlxMzgtjT3B8W279ccvn8nccHPahZEGZ1/QMtzmVBXw2bNT32uciszPbm7i4XUH+J9z51Fbkf7cW16Q+HDdax7YQESptPaNx8sMI50GDe19/PhJa1tDJs5bp203Hf3nl3ex+WAXV1+8OK3033iZ49u2DLf1TC/J5f9SOL7Hte0EToNYwy2VyqDx5GZbFaHd7uFDa/ePelyFF1IxsNpFpBB4Afi7iPwMSJxPkgJKqY8qpY5WSi1RSl2ilDoQ89m1Sqm5SqmFSqlHvXxPOrT1BPnHij2859gZGXlQHGaV57OntWeweEF9ay/fvnc9x88qzcjr45Ao4vGXV3bzxt52vnvxkYPn5aRLok2i2xq7+MUz27j4mOmcl8aG5HimluSO8Gr22BGDeRlGDByqitzzuq95YAN9wcioB9CO1jaMnFz/bpc2//ZFR2akeCGxV2V9g1U044Mn1qSdohOLm8Lp6g9x1b3rWTClkM+dnXmZbefIgNiJUCnFt+9dTySq0iqaMaLtBOeDxEZpRjsnJnHb1r2K75dVe1r5y6t77KIZZW6/mlr7Ln3e3hvku/ev5+gZJXzyjNHPXUnWdnyfOCmwWb70ima4tQ0j++W3z+9gS2MXP3xPeoVKxpG3hK7626t7CEWjfDbD6BXAnMoC2npDHLQdX89sbkzrTLlETCnOHWzT4dWdh/j3yn3815mzOWJa+p5tGHp24/dn/ujxzPaSDGs7wXOb6V4Sh0SH6979egPLd7XyjQsWZRTld2SG4c+ss8ctP5DFVe9OP+I22LaLc257Uxe/e8HKHvBiuMXLDPCLZ7ZR39rHte85OiPnltN2S/fwM9h6g2G+fZ+1xvj0WZk9K4OH68YZFE9tbOTxDY188e3z007RjZUZRvbHNQ9sIKoU37sk/W0qg2273MN9bb385MltnHdENe9anNl6LpHMf3xpF1sau7jmksVpp+47VBePdBroMNwcuePv4bNbmvjCP97g36/VJ/gt76RiYF0K9GJ57h4DdgAXjZlE48Q/VuylPxTl02dl5kFxOLGunP5QlFV72ugPRfiff74BwM8+eFzK5TvdcDb1xZ5dsq+tl5se38JZC6p4z7GpbwqNx++zokyxKSORqOLrHiNjDlOLc0ecufLjJ7fS0N7H9ZdnPqmCZbxFlRU9cXhiw8FBr1W6eeKxzCi1+jy22lZDex832FGa92UYpQHLq1KWn01D+5DcoUiUr99lFc1ItbR5IqYW546oZnnjY1s4aEdpAlmZj8VpJbn0hSLDokwPrj3A05ub+Mo7F4x6snoyZtge+Vjv+u4WJ0ozJe3CM7EU52WRm+0b1ucD4QjfuHtdRkUz4plakse+9pFRgbbeEDe8N/XyvW5ML8mltSdId0yU6c6V+1i24xBXXrAopXPjEuH8buw41+VcOcy86XVVMBzlnyvqOXdhdUYeeQcnLe2ZzU3sbunhy/9ew6KpRSkdHp+MmrJ89hzqHXS+DIQjfOveddSU5/Glt2fe9oyykWN01Z5W/rF8L/95evp7SYa1XZrHoZ4gXf1D53c5hxVfl8FeEgcRYVrJ8FTMtp4g1z2yieNnlfKhEzMz3IDByGXsPHnXqn0s39XKlRcsGnTgZdp2rMzWmVeW4fYtD4bblOJcRIbLvOVgF79/YSfvPX5m2vu7Y5lakkckqjgYY4D/7GnrsOLrLjvao74bvu2jZyDM1Q9sYMGUwrSq+8bj3MPYMf3EhoM8ubGRL523IGPDzWm7vrV30OBUSnHNAxsAuMaD4VaSl01+wD+sP+pbe/npU9YRO+kWtYplasnIMf2HFy3D7XuXHpWx4QZOfwzX+99/cCNzKgv4gIfncDRSGXXfVUpFlVJhpdTtSqmfA98YM4nGgWA4yu3LdnPm/MqM9l7Fcvq8CvIDfn7+9DY+9ZeVrNnXzo1XLPH0sICV315TnsfG/Z2A9cBcefc6AK67LHPvtcOCKYVsOdg1+P/blg1FxrxM1gBzqwppaO8bVGCv723jzy/v4iMnz/LkLQVYaKe5bW20ZO/oDfGd+9ezaGpRxvsTHGorCsj2C1vstp3Ujqgi4700sSyYUjSsz3//wk42HujkB5cudt1Amg4Lpxax+1Dv4MG3K3a18tdX9/CJ0+o4flbmURqnbWCwXw51D/C9BzZwzMwS/vP0zKM0APOqCxEZajsaVVx5z1qyfb6McuhjEREWTikaHCtgpb1sb+rm2su8TeAAC6oL2dbYPRhNfWFrM3et2sdnzpqTUWrDsLbjxnljZz8/fHgjJ80u58MZetiH2racEFvtseg4Vwo0OFcOM296XfXo+gO0dA/w0VMzS3t2WDiliEVTi7j5iS1c8dtlCPC7j57gydkFcMS0Ig71BAc93L942jo64AeXHpVRurNDeUGAysKcwflyIGztU51WkuvZKIzXIct3Hho8rDiTvSTD2p46fI7/4cNWquS1Hgy3WJmdtpu7rGJRJ9SW8YGl6RXRcZP5QEc/Hb2Wvv7XynpW7G7lWxd6M9xys/3MrigYlDliF0QqyvUWcQNYNHV4f2zY38Ef7eNTUjmsOBkLpxaxOeYe3vKE5Ry+9rKjPZ0HOKeqAL9P2HLQWtN19oe4+oENLJxS5CnbwZG5JxgZdCY+uv4gT21q4v/eMX/wOKFMEJFh6xZnn6JPJKOiVrHE38PdLT387OmtvGvxlLSOdHDD0fuObv798zvZ1dLD1Zcs9mR8j0YqLb/D5b0LdAsynjy8bj9NXQOeBzVAUW42X3nnQpbtOMSrOw9xw+VHc0GGeyPiOWp6CWsb2lFK8bfle3lpewvfuvAITw+Mw8Kpxexo7qY/FGF7Uzc3PraZcxdVe4qMDcptexc37O+kPxTha3euYVpJnpZ9HQvsh9IxPL/34AZauq3S5l4fnGy/j7lVhWw6YD3w/3qtnue2NPP189MrbZ6IRbbyjUQVmw928tOntvLuo6dx/lHex8vCqUVEooqtjV30DIT5yp2rmVWez1ff6S1K47QNVp87E2xXf5gfpVna3I28gJ/a8nw2HbDu5+2v7LZKm7/7iIw2sLvJvulAF0op1tS38+vnrNLmmRTNcGt7IBxlZ3M3HX0hvnH3WuZVF/JFD3s6HRZNtRZ6mw5Yff6Nu9cSjES5IcPiMLGU5geYUpwz2Oe/e2EHb+xt53uXLPbsXDnMvOl11V9e2UNdRT5nzfdW7l1EuPl9x1BdlMPsygL+9ZlTPUXEHI60HQmv721ndX07v3l+B1ecoOf5WjS1iPX2PP+Lp62quTocI858tmF/J31B67DuWeX5Wo4kWDS1iJ3N3fQMhHl2SxN3v76P/37b3IxTJR3KCqxndv3+DpRSXP3AenoHIlrmg6H+6GB/ex/XPmydefW+E7wZbgCLphUNyvznl3fx+t52vnNReudTJpN5fUMHoUiUr925lrKCAN+80PsaY9HUIpq7Bmjq7GfVnlb+vGwX/3GKd+dwTpafuVUFbLDH9PWPbKKxs58b3uvNcIPh/dHaM5Sm/v88OkDBcqJsPNBJJKq4+/UGnt/azDfOXzSYfZIpsysLCPh9rG/oIGo7+bL9Pr53yVGeZV40rXhQN2852MXPn9nGRUum8bY0K4OmS8KZSUT+G/gcMMfe4OtQBLw8plIdZva19nHktGJtnf3JM2Zz7qJqCnOyMs6xduOM+ZU8uv4gNz6+hT+8uJOzFlTxkZP1hDdPm1vBb5/fwZ0r6/nrq3vID/i54b3eozQAx9aUkuUTHl13gH+u2MuO5h7++smT0q6O40ZxbjaLpxfz+IZGinKzueeNBr749vksmVnquW2AU+dW8Pfle3lmcyPfe3Ajp82t4OMZbqaO55Q5Fdz+yh7ue6OBXz27nZK8bH7wHu+TCcBJs8sRgYfWHmDvoV72tfXxr0+f6nkxAlZ+95yqAh7fcJBwVPHo+oN8/fyFg0aAV06dW8EDq/fz1MZGrn/UMvTTLW2eiFPmVPDvlft4YM1+bnp8C9VFOWkdWjha22BVNVvf0EFT1wD3/McJWkqb15TnMaM0j8fWH6S5a4DntjRz9cVHetovGsupcyp4bmszj284yE+e3MqFR09Nu6TxePFW0VVd/SH6ghH+45Raz4tosBxfj33pLA2SDXHcrFIqCgL89KmtHOoJMrU4l+9kWMghnrMWVHLdI5u56fHNg46RTKrmxjOzLI/ZlQXcuXIfL25rYU9rL3//r5MzLvQRyxnzKvnFM9u55Ymt3PPGPhZMKeR/3p75/tdYTp9XyZMbrDnykXXWHJxpsahYTqwrJyfLx23LdnOgo5+oUtz43mO0jLnT51XyyDprjvnN8zs474jqtM68SkRxbjZLZpZw3+oGdjR3s/FAJ7/76AkZVVWN58z5VcAmfvb0Np7a1MiM0jyuvMBbxM3h9HmV/P3VvdzyxBb+ucI6luU4jxkmYDnjS/Oz+dvyPdy2bDedfWH++sklntLUY2X+54p6bnliC39+eTcnzS7noxlUBo0n2+/j5DnlPLLuAD3BMCt2tXLTFUu0OFad9NPfPr+TVXtaKcnL5nseI26pIIkOrhWREqAMuB64MuajLqVU65hLlgZLly5VK1eu9NRGOBLVMvjGkq7+EOf/9EUa2vtYPL2Yf3zqFM+pZA6hSJR3/uQFdrX0EPD7uO3/neipyEI8X7rjDe5bvR+Ar5+/0FORhXj+vnwPV91rVU9++6JqfvfRE7Tdy00HOrnoFy8RiSpmledz13+fmnFhi3j6QxHOvuk5Dnb2k5Pl4+//dTJLPXrFYvn0X1byxMZGAL5z0ZFaIrQOf3hxJz98eBMAFx49lV9+6HgtChis0uCX/fpllLLSKO7+7GkZF7aIp3sgzNk3PUtLd5D8gJ87Pn2KNmMc4GN/WsELW5sBuPayozKuYOnGL5/Zxs1PbAXg8uNmcMv7j9HiAAGrEMEHf29VNF80tYh/feZUbXNLpojIKqXUqFUA30q6SilFJKomtK7654q9fOvedcwozePPnzhRy6IfrDS4d/30BVp7giytLeOvnzzZU9phLH99ZTffud/ao3L1xUd6TnV2iEYVl/7qZdY1dFBVlMOdnzk140qi8aypb+fy3ywjElVccsx0fvqBY7XNwVffv57bX9lDwO/jN/9xfFqHNyejozfEO37yPE1dA9rnmftXN/C/d6wG4Evnzc/oiJNEfOQPr/Ly9kOU5GVzx6dP8RyBdNje1MW7f/4SA+Eo5y6q5vca1y4/fmILP39mO36f8OP3H8OlGrKRwFq3vPMnL7C3tZe6inz+/Vl9a6JntzTxn39+DYD/d/psvnPREdp03Of+vopH1h2kIODnL588iRNq9a21EumqZAZW0m+fSIpLh4E1WWjrCbJhfycnzi7znC8fz762Xh5ae4CzF1Zpi0Y49AyE+cfyvcytLtDidYxFKcVdq/YRiijet3Sm5/B6PMu2t7C2oYP3L63xnMoQz87mbh5Zd4B3Lp6acdn0RHT2h/jH8r0coTE66xCNKv69sh4RuOKEGs+pgfE8v7WZzQc6+eCJs9I+xHk0tjV28fiGg1xw9DTXA0C90NYT5I7X6jlmZknG1bYSEY5E+dfKenKy/Fx+3AxtiymHpzc1srO5hw+eVKMluuyVNAwso6smGG09QQpzs7TPxfvb+9hysIvT51Vq3TuhlGLZjkMU5WZpdbgAdPSFWLa9hZPnVGjXHxv3d9LcPcCZ8yq1zgfhSJRntzQzt6pAW5Tc4WBHP6vr23jbgmptBrLDil2t+H1oXTyDtX55YWszJ9SWUV2sx5hw2N7Uxd7WXt62oFqrHo1GFc9tbWJmWb72tUVz1wCv7W7lzPmV2nXFG3vb6A9FOWVOuTbjCizD8LktzRw9s8RzOmM8mRhYuwDnw/i/UimlvJXb08hbRWkZDAbDW4U0DCyjqwwGg8EwLiTSVQmTjJVS+vKJDAaDwWAYA4yuMhgMBsNEI6VdnCJyCeDshn1OKfXQ2IlkMBgMBkP6GF1lMBgMhonAqEnMInID8L/ARvv1vyJy3VgLZjAYDAZDqhhdZTAYDIaJQioRrAuBY5VSUQARuR14A/jWWApmMBgMBkMaGF1lMBgMhglBqgc9lAJOJaaSsRElc1atWtUiIns8NlMJtOiQ5zAwWWSdLHLC5JF1ssgJk0fWySInTB5ZdciZSY37UoyumihMFjlh8sg6WeSEySPrZJETJo+sk0VOGENdlYqBdT3whog8i1Wh6SyGnzUy7iilPNegFpGVqVSsmghMFlkni5wweWSdLHLC5JF1ssgJk0fWcZLT6KoJxGSREyaPrJNFTpg8sk4WOWHyyDpZ5ISxlTWhgSUivwL+oZT6p4g8B5xof/QNpdTBsRDGYDAYDIZ0MLrKYDAYDBONZBGsrcDNIjIN+DfwT6XUG4dHLIPBYDAYUsLoKoPBYDBMKBJWEVRK/UwpdSrwNuAQ8CcR2SwiV4vIgsMm4eHj9+MtQBpMFlkni5wweWSdLHLC5JF1ssgJk0fWwyan0VUTlskiJ0weWSeLnDB5ZJ0scsLkkXWyyAljKKsopVK/WOQ44E/AEqWUf6yEMhgMBoMhU4yuMhgMBsN4kso5WFkicrGI/B14FNgCXD7mkhkMBoPBkCJGVxkMBoNhopAwgiUi7wA+hHW2yArgDuB+pVTP4RPPYDAYDIbEGF1lMBgMholGsgjWN4FlwBFKqUuUUv94syosETlfRLaIyHYRmTBlfUWkRkSeFZGNIrJBRP7Xfv8aEWkQkdX268LxlhVARHaLyDpbppX2e+Ui8qSIbLP/LRtnGRfG9NtqEekUkS9NlD4VkT+JSJOIrI95z7UPxeLn9rhdKyLHj7OcN9l7X9aKyL0iUmq/XycifTF9+9vDJWcSWRPebxH5pt2nW0TkXeMs579iZNwtIqvt98etT5PMS+M1Tt8Sumqi6imYXLpqMugpW6YJq6smi55KIuuE01WTRU8lkdXoqniUUm/pF+AHdgBzgACwBjhyvOWyZZsGHG//XIRVLetI4Brgq+Mtn4u8u4HKuPduBK60f74S+NF4yxl37w9iHRI3IfoU6+ye44H1o/Uhlsf+Uawzf04Blo+znO8EsuyffxQjZ13sdROkT13vt/18rQFygNn23OAfLznjPr8F+O5492mSeWnCjdM3y2si66lRxsSEmFfjZJ1Ueirm/k8YXTVZ9FQSWSecrposeiqRrHGfG12l1Oh7sN4CnARsV0rtVEoFsdJLLh1nmQBQSh1QSr1u/9wFbAJmjK9UaXMpcLv98+3Ae8ZPlBG8HdihlNoz3oI4KKVeAFrj3k7Uh5cCf1EWrwKlYpWqHhc5lVJPKKXC9n9fBWYeDllGI0GfJuJS4A6l1IBSahewHWuOGHOSySkiArwf+OfhkCUZSealCTdO30RMWD0FbwpdNZH1FEwwXTVZ9BRMHl01WfQUGF2VKsbAsjq7Pub/+5iAikFE6oDjgOX2W1+wQ5h/mgjpDDYKeEJEVonIp+33piilDtg/HwSmjI9ornyQ4ZPAROxTSNyHE3ns/j8sT5DDbBF5Q0SeF5Ezx0uoONzu90Tt0zOBRqXUtpj3xr1P4+alyThOJwuTpg8nga6abHoKJoeumqzP/0TXVZNJT4HRVYMYA2sSICKFwN3Al5RSncBvgLnAscABrHDsROAMpdTxwAXA50XkrNgPlRWDTf1cgDFERALAJcCd9lsTtU+HMZH6MBEichUQBv5uv3UAmKWUOg74MvAPESkeL/lsJsX9juFDDF9gjXufusxLg0yGcWrQzyTRVZNGT8Hk1FUTrQ8TMQl01YS/1y4YXWVjDCxoAGpi/j/Tfm9CICLZWAPj70qpewCUUo1KqYhSKgrcymEMDSdDKdVg/9sE3IslV6MTYrX/bRo/CYdxAfC6UqoRJm6f2iTqwwk3dkXkE8BFwEfsiQs7jeGQ/fMqrHzxcT0ANsn9noh9moVVbvxfznvj3adu8xKTaJxOQiZ8H04WXTXJ9BRMHl01qZ7/yaCrJpOeAqOr4jEGFrwGzBeR2ban6IPAA+MsEzCYy/pHYJNS6scx78fmhF4GrI//3cONiBSISJHzM9Ym0vVYfflx+7KPA/ePj4QjGOZlmYh9GkOiPnwA+Jhd+eYUoCMm7H3YEZHzga8DlyilemPerxIRv/3zHGA+sHN8pByUKdH9fgD4oIjkiMhsLFlXHG754jgP2KyU2ue8MZ59mmheYpKM00nKhNVTMHl01STUUzB5dNWkef4ni66aZHoKjK4ajhqHyh4T7YVVOWQrlmV91XjLEyPXGVihy7XAavt1IfBXYJ39/gPAtAkg6xysqjZrgA1OPwIVwNPANuApoHwCyFoAHAJKYt6bEH2KpUgPACGs/N9PJupDrEo3v7LH7Tpg6TjLuR0rf9kZq7+1r32vPSZWA68DF0+APk14v4Gr7D7dAlwwnnLa798GfDbu2nHr0yTz0oQbp2+mFxNUT40yJibEvBoj56TRU7ZcE1JXJZhTJ+Tzn0DWCaerEsg54fRUIlnt92/D6KrBV8KDhg0Gg8FgMBgMBoPBkB4mRdBgMBgMBoPBYDAYNGEMLIPBYDAYDAaDwWDQhDGwDAaDwWAwGAwGg0ETxsAyGAwGg8FgMBgMBk0YA8tgMBgMBoPBYDAYNGEMLIMhTUSkQkRW26+DItJg/9wtIr8eo+/8koh8zP75+yJy3lh8j8v3XiQi3z8c32UwGAwGPRg9ZTCML6ZMu8HgARG5BuhWSt08ht+RhXV+xPFKqfBYfU+C7xb7u09XMQcyGgwGg2FyYPSUwXD4MREsg0ETInK2iDxk/3yNiNwuIi+KyB4RuVxEbhSRdSLymIhk29edICLPi8gqEXk87uR2h3OB1x2lJSK3icgV9s+7ReR7IvK63fYiF7k+ISL3iciT9vVfEJEvi8gbIvKqiJTb131RRDaKyFoRuQNAWR6Y54CLxqDLDAaDwXAYMXrKYDg8GAPLYBg75mIpnUuAvwHPKqWOBvqAd9vK6xfAFUqpE4A/Ade6tHM6sCrJ97QopY4HfgN8NcE1RwGXAyfa39GrlDoOeAX4mH3NlcBxSqklwGdjfnclcOYof6vBYDAYJh9GTxkMY0DWeAtgMLyJeVQpFRKRdYAfeMx+fx1QByzEUihPWhkO+IEDLu1MAzYl+Z577H9XYSknN55VSnUBXSLSATwYI8sS++e1wN9F5D7gvpjfbQKmJ/l+g8FgMExOjJ4yGMYAY2AZDGPHAIBSKioiITW04TGK9ewJsEEpdeoo7fQBuaN9DxAh8TM9EPNzNOb/jiwA7wbOAi4GrhKRo+10j1xbBoPBYDC8uTB6ymAYA0yKoMEwfmwBqkTkVAARyRaRxS7XbQLmjaUgIuIDapRSzwLfAEqAQvvjBcD6sfx+g8FgMExIjJ4yGDLAGFgGwzihlAoCVwA/EpE1wGrgNJdLH8Xy2I0lfuBvdprIG8DPlVLt9mfnAA+P8fcbDAaDYYJh9JTBkBmmTLvBMAkQkXuBryulth3m750C/EMp9fbD+b0Gg8FgmFwYPWUwDGEMLINhEiAiC4EpSqkXDvP3ngiElFKrD+f3GgwGg2FyYfSUwTCEMbAMBoPBYDAYDAaDQRNmD5bBYDAYDAaDwWAwaMIYWAaDwWAwGAwGg8GgCWNgGQwGg8FgMBgMBoMmjIFlMBgMBoPBYDAYDJowBpbBYDAYDAaDwWAwaMIYWAaDwWAwGAwGg8GgCWNgGQwGg8FgMBgMBoMmjIFlMBgMBoPBYDAYDJowBpbBYDAYDAaDwWAwaMIYWAaDwWAwGAwGg8GgCWNgGd50iMijIvLxcZahTkSUiGSNpxwGg8FgmJgYXWUwvHkxBpZhUiAiu0XkvFSuVUpdoJS63eP3XSMif/PSRgrf8WERWSki3SJywFa2Z4zld6aKiHxCRF4ao7brROQREWkTkYMi8stkyt3upz0i0iMi94lI+VjIZTAYDF4xuurwMlF0lYicLSJRu4+c17gaz4bxxRhYBsM4ICJfBn4KXAdMAWYBvwYuzaCtERP+BPdG/hpoAqYBxwJvAz7ndqGILAZ+B3wUq5967d83GAwGwxhjdFVquspmv1KqMOblyXg2TG6MgWWYdDgeKxG52fYs7RKRC2I+f05E/ivm//9PRDbZ1z4uIrUxny0WkSdFpFVEGkXkWyJyPvAt4AO2F2qNfW2JiPzR9uA1iMgPRcRvf+a35WkRkZ3Au5PIXwJ8H/i8UuoepVSPUiqklHpQKfU1+5rbROSHMb9ztojsi/n/bhH5hoisBXpEZJ6d5vFJEdkLPJPC365E5LMisk1E2kXkV2JxBPBb4FT772/P7E4lZDbwb6VUv1LqIPAYsDjBtR8BHlRKvaCU6ga+A1wuIkWaZTIYDAatGF31ltJVBsMwjIFlmKycDGwBKoEbgT+KiMRfJCKXYimgy4Eq4EXgn/ZnRcBTWJPmdGAe8LRS6jEsb92/bC/UMXZztwFh+7rjgHcCjnL8FHCR/f5S4Ioksp8K5AL3ZvB3x/IhLOVYassFloftCOBdyf72GC4CTgSWAO8H3qWU2gR8FnjF/vtL3b5cRH5tKzu319okcv8U+KCI5IvIDOACrHvgxmJgjfMfpdQOIAgsSNK+wWAwTBSMrnpr6CqAatv43SUiPxGRgiTXGt7kGAPLMFnZo5S6VSkVAW7HCuFPcbnus8D1SqlNSqkwljI61vaOXQQcVErdYnuoupRSy92+TESmABcCX7K9eE3AT4AP2pe8H/ipUqpeKdUKXJ9E9gqgxZbHCz+3v68v5r1rbPn6SP63O9yglGpXSu0FnsVKg0gJpdTnlFKlCV5LkvzqC1iGUyewD1gJ3Jfg2kKgI+69DsBEsAwGw2TA6Kq3hq7abMs0DTgXOAH4caoyGt58GAPLMFk56PyglOq1fyx0ua4W+JnjrQJaAQFmADXAjhS/rxbIBg7EtPU7oNr+fDpQH3P9niRtHQIqxXvuef0o7yX72x0Oxvzci3sfakNEfFgewHuAAiyvbhnwowS/0g0Ux71XDHSNlYwGg8GgEaOr3gK6Sil1UCm1USkVVUrtAr4OvHcsZTRMbIyBZXizUw98Js5jlaeUWmZ/NifB7ymXdgaAyph2ipVSTj72ASwl6DAriUyv2G29J8k1PUB+zP+npiBj/HvJ/vbRcGt7GCLyWxleMSn2tSHBr5Vj9c0vlVIDSqlDwJ+xPK5ubACctBdEZA6QA2xN4W8wGAyGyYLRVZNbV7nJZdbYb2HMzTe82fkt8E2xqtE5m3/fZ3/2EDBNRL4kIjkiUiQiJ9ufNQJ1thcLpdQB4AngFhEpFhGfiMwVkbfZ1/8b+KKIzBSRMuDKRAIppTqA7wK/EpH32Pnd2SJygYjcaF+2GrhQRMpFZCrwJc1/+2g0AjNFJJDk7/isGl4xKfbluhFYKdUC7AL+W0SyRKQU+DiQKA/+78DFInKmnc/+feAepZSJYBkMhjcTRldNYl0lIueISK1Y1AA3APen+DcY3oQYA8vwpkYpdS9WSP8OEekE1mNtVMVepL8DuBgr/WAbcI79q3fa/x4Skdftnz8GBICNQBtwF1a+NcCtwONYBRlex0orSCbXLcCXgW8DzVgevC8wlN/9V7ut3VjK8l9p/ulJ//YUeAYrenRQRFrS/e5RuBw4H+vv3g6EgP9zPrS9imcCKKU2YOXn/x2rXG4RycvkGgwGw6TD6KrJrauwioYsw4roLQPWAV/ULI9hEiFKJY+uikg1cDpW3m4f1sBfqZSKjr14BkP6iMgLwB+UUn8Zb1kMBsPhwegqw2TD6CqD4c1Lwo2LInIOVui4HHgDy3uci5WLO1dE7gJuUUp1HgY5DYaUEJF8rFz1XeMti8FgGHuMrjJMRoyuMhje3CSrDHMh8Cm7JOYw7IoyF2GFrO8eI9kMhrSwPdjbgQeBl8ZZHIPBcHgwusowqTC6ymB485MwRVBEpirr5GqDwWAwGCYkRlcZDAaDYaKRrMjFahF5SkQ+aVdPMRgMBoNhomF0lcFgMBgmFMkiWH7gPKzTvy8EXgX+Cdwfdxr3uFNZWanq6urGWwyDwWAwaGLVqlUtSqmq0a4zuspgMBgM40UiXTVqFUEA+3yBC7AU2DnA00qpj3gVSkR2A11ABAgrpZaKSDlWmc86rLKf71dKtSVrZ+nSpWrlypVexTEYDAbDBEFEVimllqb5O0ZXGQwGg+GwkUhXpXQOllIqiHWewiagEzhCo2znKKWOjRHuSiylOB94miSH4BkMBoPB4GB0lcFgMBgmAkkNLBGpEZGv2YfXPWRff4lS6vgxlOlS4Hb759uxSu1OCHa39LCtsUtrm8FwlHX7OohGR48kpkNL9wDLdx7S3m5bT5BlO1q0t9vVH2L5zkOEInqPrOkZCPPqzkMMhCNa2+0PRXhlxyH6Q3rbHQhHeHl7Cz0DYa3thiJRXtjaTFd/SGu70ajixW3NdPTqbVcpxcvbW2jtCWptF2D5zkM0dfVrb3fl7lYOduhv9429bdS39mpvd31DB7tberS3u2F/Byt2tWpvNxlGVw3R0j3AG3vbSCU7JVU6ekPax6AzhwbDeuf87U1d7Gju1tpmOBLl5e0t9AX1zvd7D/Wycb/e0wOiUcWyHS10ap7rmzr7tY8rsObNlu4BrW229QR5bXerdlnX7mvnQIferOOegTDLdrQQ1rz22XKwS/v8PhCOsGx7i/Z1z66WHrYc1Lu2jkYVy7a30K15LZUOCQ0sEVmGVT60GqsE7kKl1DVKqc0av18BT4jIKhH5tP3eFKXUAfvng8CUBPJ9WkRWisjK5uZmjSK50xeMcNEvXuIdP3mBO1aMqAacMbe+uJOLf/kS//WXlVofsO/ct54P/P5VPvu3VVqNoe8+sIEP37qcT9z2mlZj6ObHt/CB37/KR25drtUY+s1zO/jg71/lfb99RavRctuy3Xzo1le55JcvaTUu7lhRz0f+sJx3/uQFmrv0KZ373mjgY39awTk3P6d1ofTYhoN89I8rOOPGZ7Qual7Y1sJH/rCcU65/mg37O7S1u6O5mw/8/lVOuvZpVu1Jms2VFvvb+7jit69wyvVPs2x7i7Z297X1ctmvl3Hmjc/y5MZGbe32DIS55JcvcfbNz3H/6gZt7fYFI7z3N8v49n3rtLU5GkZXDedTf1nJZb9exvce3Kitzc//43XOvPFZ/vWaPt33p5d38aFbX+W9v1mmbW4ORaJc/utlvP2W57Xq6X++Zs3LF/zsBQ5pNAY+9qflXPjzF/nF09u0tfnsliY+fOtyTr/+GfYc0rfA/sI/3uCyXy/ju/dv0Ga4rN3XzhW/fYWTr3ua9Q365vlrHtzA+377itb1T1d/iEt/9TKnXv8ML27T9xz/5MmtfPjW5Xz41uXaDJfeYJj3/Oplzr75Oe57Q9/8/tdX9vDhPyzXuu5RSvHB37/Cu376An94caeWNgEeWneAD/9hOWff9Bz728dnK26yCNaVQJ1S6mtKqVVj9P1n2B7GC4DPi8hZsR8q6yl2fTqUUr9XSi1VSi2tqhp1H7Rntjd1D1rC339oozbvkLMofWZzE3eu2qelzdh2n9jYyN2v62v3gD1QX9jazD+W61NgLd1WpGLF7lb+8KK+cxcdI2VdQwe/fHa79nZ3Nvdw8xNbtLXrRJgaO/u57pFN2trd0Wwp2r5gROvCq6HNGg/9oQhX3atvUe1MiMFwlCvvXqdNoXf2DT23X7trDRFNyjd2PvjqnWu0eeWd/gW48u612rxxPcEwzp9+1b3rae/VEyk82NlPfyjK+UdN09JeihhdZROORFm7z1qo3rZst7ZF6zq7nasf2KAt+ru9sXuw7V9pmpvbeoJ09lvPyDUPbtAWUXaew/3t/fzoMX12++5DlrPrx09tZfNBPZGs7U1Wv/YEw3zn/g1a2gSob7Nk/eure3h5+yEtbe61nX2RqOJrd63VZgw565/HNzRyryYDo2cggqOGvnbnWm3GkNOvK3a38seX9Kx9mrsG6LPl+/Z967VlguyyI2I7mnv48ZN61j3BSJTGTms9dcOjmwe/wyt7bedCZ1+I72tc86RDQgNLKfWCUkqJyGwR+bGI3CMiDzgvHV+ulGqw/20C7gVOAhpFZBqA/W+Tju/yirOAuurCI+gNRnh03YFRfiM1QhHF7MoCjp5Rwl9e2aOlTbAWppccM51FU4u0thuKRDlrQRUn1JZx+yu7tS18g5Eoi6YWcdaCKm5ftlvbRBuKRJlZlseFR03jb6/u0RYdC0WilOVnc8UJM/n3ynptqXfBcBQR+PhpdTy4Zr+2KFYoEqUg4OeTZ87h6c2N7GvTE8UKRS1D4n/fPp9Xd7ayVVMKrRPN/eo7F7CuoYPX97ZradcxfD50Ug07m3t4SVO0yWn3P06Zxf6Ofm3RplDEeg6+fv5CDvUEeWStnnnHkfc/T6+jeyDMXZqcO05Ue8GUQi3tpYLRVUP0hSJEoor/OXceOVk+7nldz+IyHIly3hHV9Iei2sbKQCTK3KoCLjhqKv9csVeLUyJk643PnzOX/lCUO1fWe24ToC8YpjQ/mw+eVMO9bzRo8d47zp3/d/pscrJ8/O1VPXraeQa/cO58XtjarC1NrD8U4QNLa6guyuG2ZXoMgUFZz5nHpgOdrNSUVRAKK9555BR7/bNbS5vO+Lz02Okc7OznCY1z/NEzSjhzfiV/e3WPlrVPbL92D4S5R5OTPRxRTC3O5bLjZnDnqn30Br07/Bwd9+mz5iAC/9QUeQ7a7X7qrNk8vvHgmKTvj0YqRS7uw6qQ9AvglpiXJ0SkQESKnJ+BdwLrgQeAj9uXfRy43+t36cDxVpw0u5zqohxe3KZnYRYKRwn4fVx23Aw2HejUNhkGw1ECWT6uOGEm6xo6tKWFhSKKgN/H5cfPYGdzD5s15c2GIlFysny89/gZNHUNsHpfu5Z2gxGrHy4/fgZd/WGW79SzNyQUiZJt37eBcFTbeAhGFNl2/4ajime36FmzhSNRsvw+3nfCTJSCx9brOZc1FLYmsfcvrcEn8LAuA8CeHC87fiaBLJ/Gdi3Fc9GS6RTlZmlzlDjK9+1HTKGqKIdH12tywNgG7ClzKqiryOchjY4dgGNmlrJ4ejFPbNCzWHD6IdufUv0k3dzHW1xX9Yes/q8uyuGk2eXaUplCEcWCKUUcW1Oqce6w5tArTphJW2+I5bu8R0VC9vibV13ISXXlPKzpeekLRcjL9nP58TMJRRRPbvL+vDiL4MqiAOcdMYVH1h3UtLi22vjgiTUAPKJpLuoLRSjJz+aiJdN5YauevS2O/rjk2OnkZvt4eO1+z22CNW8Gsny89/iZrNnXocWhGIxYa8BzF1UztTiXx3TN8ZEo2X7hihNmcqCjnzfqvRuZzhg4akYxR80o1vYchCJRsrMsWXuDEZ7b4n1+cZ7ZaSW5vG1BFQ+vPaDFcR+OWGvrK06oQSm06eR0SEUL9iulfq6UelYp9bzz0vDdU4CXRGQNsAJ4WCn1GHAD8A4R2YZ1tskNGr7LM47iys32c9rcCl7brXGhniWctcBKHdGhZGDIsHDafWWHnnZDkSiBLOHshdWAVTBAV7vZfh9nL6jGJ1YKoq52A34fp8+rJCfLp63dYNgyhE6oLaM4N0tju1Fy/D6OnFbM1OJcntfVrm241ZTnM7uygGUax4NPoLo4l6NmlPCKxvEAUJafzdLaMl7V1K5jABTmZHHKnApt/eC0m5vl58x5lSzboafAjKN8An7rWV65u1XL3sdYQ+jshVWs2tumJQobtv/mbL94bisD3vK6ynEE5mT7OWVOBduauj2nfyqlCNrz89sWVLG+oUPLWAnZOuqUORVk+UTLs+g8G9l+H29bWMXmg120aUiP6gtFycv2c8zMEsoLAlrmI0fWgN2vrT1BtjV538caikTJ8gnTS/NYMKVQi+6PRhX9dh+cs6iKYCTK6xqiTY4DqTQvmxPrylmuqTiOo/d1rn8G7DkzJ8vP6fMqeUXXHG8/W2fOt2R9VYMT2BlbWT5rbK3d16Fln6MzD5xQW0Z+wK/nOYgOPbNnLaiiob2PfW3e90yFIlGy/MLsygJqyvO0rSHSIRUD62cicrWInCoixzsvr1+slNqplDrGfi1WSl1rv39IKfV2pdR8pdR5SqnDW44qAY7iys32sXh6CY2dA1ryWp0BO7eqgLL8bF7brSdEPmBHxuZXF1JZGOBVTYabNXn7mFGax4zSPH0Tom2wlORnM7+6iNX17VraDdpe0txsP0fNKNHXrr04yPL7OHZWmbZ2LYPbh4hwQl0ZqzWlxlkKx1r0njKngtd2tepRDtHoYLTi5NnlrK5v15KGGY5ZKJ08u4JNBzvp6PO+qHMMi0CWj1PnVLC3tVdLVSgnMhbI8nHK3Apae4Ls0rDBfMhgseTtDUa07KsJxch70uwKIlE1uM9GR7vjFMF6y+sq59lz5juATQe8ZRk4YzCQ5WNpXRlRhZb5LmQ7fQpysjimplSLs87x3Gf5fJwypxyw9rZ4pS8YITfbj4iwtLaMlRraHJJVOHl2BQArNOjpcFSRZc/1p86pYOXuNs97TfvtcZUX8HPcrDJ8gp4+sOfjLL+Pk2eXazOIwxGrDxZMKaS8IKBlnRIcNLB8nDq3grbekCaDWBHI8lFeEGDhlCJNxrutN7Is/RmJKi1FncJ2BlO232cZxFqMQXt+sXU9oK0PhtYmFazYpb+q5GikogWPBj6F5Z1zUi5uHkuhJiL9MYrriGnFAGw64H1TquO9EBGOm1XGGo2GRY69UD9qRom2UrCxg/b42rLBDdVeGbANC4Bja0pZU9+u5WGw5LWUzTEzS1nX0KElAuCkdoIl79bGLi0eIiddAOCYmSU0tPdpqVrlpAgCLJlZQtdAWI+XKDw0Ho6tKSMYjrKt0bvSCcYsPo6dVYpSep63WENoyUxrAarj2YhVvkfbC1udhlCWXzjalneDBnkHBiNYMijvOg3P8jgbWG95XeVkWuRl+zliWhHg/bkJxoyVY2tKAbQ4foIxc93RM0rYfLDLs9NnyHEgLJ5egk9gg4bncCAcISd7SO/tPtTrOTI4+Kxk+agpz6OiIKDFyeE4FQGOnllKXyjiuXCAM65ysnwU5mSxaGoxb2gyssEaW8fNKgNgo+Z11dGa1j+xzrlB3XFAz5yZ5bOeg+NmlbK+ocPz2mdwbPmEY+xndr2GarxOVAis9cm2pi7PxT6GjGxhfnUhBQG/Fh3njAGw1mhtvSH2H+Z9WKlowfcBc5RSb1NKnWO/zh1rwSYagymCWX4W2YpLR91+Z08TwMKpRexq6dGz2deOsAAcMa2YHc3dGtu1HrBFU4toaO/Tky4SHoqwHD2zhLbeEA0aSmsGY/rhmJoSBsJRLeXEndROgCUzSojqMgDCQ/IumVkKoCmyMGRoHmk7CHQpB6dd57nQsS/PaVdEOGKq3a6G/h2ISblbpNFREmu4zasuJJDl06IkgjHyzijNozg3S5tjBxj0nM4ozdPiLIldMI0Db3ldFZtpUV2US3lBwHPhmVijuSg3m5lleWzV4LmPNQSOnFZMbzDCHo97hWNlzc32M6eqkE265iOfJeuiqXr0f6ysIsKiaUVa1hTh6JDzzzGyvRot4ehwx8miaUVaChrFpoc5/apLj2b7h9Y/25q6PK9/Yuf4OZUFBLJ82gy37Jg1YFtvyHNxq1jjvSQvmxmleWz2GMmGoYwrgEXTiokqPDtUY58Dn09YMLVIY/DC0kODzibNZ86NRioG1nqgdIzlmPAM5bb7qCgIUJiTNVhi1AuxHoGFU4oIRxW7PaYWhSNRoophyisUUXomRDtFEIYUja52HcNifrVVgWy7pnx0px/maWw3dqKZP2Vs2l0wpWhM2l04tcjy7GqYbMIxKYJ1FQXkZPm0GELhGHmrinIoLwhoMdxiI02FOVnUVuRrN4Sy/T4WTinSonxjUwStRVixtgUIELMQsxYhXgmFxzWC9ZbXVbF7hQFqK/LZc8ibngpGht/TBVOK2KZpzs+x5/wjp9tOH4/PjCNrrI7S8bxEYtLuFmrSe/HOiIVTitnS2OU5nS8UHpJ1fnUR2X7x3AeOTE6kZeGUIho7B7xH8cJD81tFYQ5VRTla5vlwVA1bXIciyrNjNXbOzLINQm2RlixnvFrPgdc+CEeG+tVqt0jLMQCx6yldmVyhEbIWs/lgl4YonopZ8zj9OvEMrFJgs4g8rrv07WRiIGZhJiLUVuR7NoRguPfCWVB79WLFelpgSCHoidyoYQt10BmxGANDKCaVb25VISL62nXknVmWTyDLp13e8oIA5QUBLfctHGPA5mb7qaso0NJuMCZF0O8TFk4t0jQe1KAyFxEWTtHTbmyaB1jPnC5DHhhUlHOrCrSc5xGbIgiWotzW2K0thSQQI+/ull7PizvH0+0scA8zpbzFddVgBCvLNrDK8z07AmP3SIDlUNrZ3DO4TzLzdofP+SJ4NvKdhaWTZXHEtGL2tfV5rngXjir89nw0tTiXotwstmiMDIIVFeoPRT0fDhzbr1a0pdCzQez0q9MHQ0am9+iFT4baHQtDwDFavBrEbrpDi26OKrJj/n7wbggMORqG7teOZu/ZUeGYTJhZ5fnkZvu0PQexmVEdfaHBs7G8tOvozcKcLGrK87RVvU6VVLTg1cBlwHVoLH072XCq0ohYN6y2Ip+9Hj2Dse0CzKkqsJWMx0krPNzbNKs8HxG0Lfic1LgZpXnkZvvY1azX0KwozKEsP1tfKp9/yLCYWZanbUEdiDEs5lQWsF2TvM4EDtbCd0eTjvs2ZLAA1FUWsFPDfYsNwwPMqdRjWATj+mFOVYEeh0acYTG7soA9rb2e937ER4TmVBXS0N7nPT89zrtXV1FA10CYQx43gseXU59bVUgwEvVczjgYt8A9zLzldVX8+J5VUcD+jj5PhWcGo5L2PV1QXUQwEtWQzqeGzc3TS/I8H1MSb7TMriwA8Gy0hOMcPvOrC7UYFzD8GQQ8z3OhqBoWQa6rzPc8J8dG0gHm285grwZxbJEksPpgd0uvJweSUmrY2KqtyAdgd4ueSG6s7mjsHPC89zoUs/Yps52quzzKGu9Am1NVSCSqPM/vsespv0+oqyjQ9sw6TjnnOdjZ4v35CsSMrTmVhVrWEOkwqoEVW+5Wc+nbSUUoPGQNA8wqL6C+TYfHd8gj4CgZr2dWxedL61JeMDwXXcR+wDQYmsHIcKUwr7pQkyGkhi3U51WNUbsa5Y1XOFoiTZHhiqyuooA9h7wpMhieIghQq2FBB8NTBMFSZu29Ic8pKfGGUF1FAcFwlP0eKwkOhEcqX9CwWBpchMnwdj0+y/GLhTlVVrtex9p4pggaXTVyvNSW56MUngraxBsCdZXWgtWrgzHWqea0u8tjm/GLtboK53nxqlPVYJEgsBxUXv/++BTBOk2GgLVgH+5Mq2/t87RWidhrCifSNK04l0CWz3P6aSishi2C6yry6fboQIo/KsJa/+R6nosHXHQHeJ/jgxE1mPkATlqvd4cAxDoa7LGlQ1b/cFm967jhsjoGseexFSfr7MoC9ng03tNlXPI4JiPh6MiBFYoozyWeQ3FKZla594drMF962CTrXXlFomrY3i7QMxnA8Hx8sAwLr14cGKnE51RZXgwdKVaxSmyuHbHwaljEpgg67R7qCXo2LMJxEaHZVQX0hSKew/CxKYJgjTOl8OwkCEXUsPFbO6jMvC/qfMLgYmnIYNHj3cyJM7C8RgnDIxa3VrtePdLxhuag19CrvE6K4PjswXrLk2ix4sUYiN+DNatcT1Qofg7V4w0fHkEdjF541qnR4RkAFQUc7Oz3FKGON1zLCwIU5WR5X1zHOb1mVxQQjETZ76FoVGxJeQCfT7SsVWLTuABqNTiQ3CqZ1mnIrIjdvwv6dEd8pGW27fz0QnyKYK0uR0OcrDqM9/gUwemleQT8Pi3OyeFriHwt2R/pYLRgigTjlEFtua24PC4k3bwXnnPm4zakgi7lNTxVxGlXR4pVvLKdVZFPS/eA59z52KqHYHnI+kNRmjxW6Yk33GorHMPCm8EdjNnw6rQLerw5seNhtj3h6gjDZ7sZQhoMluHeJ8e76z1yE+/VAtjlsR/iU+5m6zKE4hY2M8vy8PtEm9fQMbrLCgKU5mdrk3ecqgi+5YlfXM7SoKfi92BVFgbID/g9pwjGOy1nVxbQ0RfydA5S/N9fkJNFVVGO53kjHBnagwVD87IXR1K8rCJCbWW+dydSZGS0DbzNRc4CelgflHsvoBKKjMysAG+OtEFjMK4PPEdv4rIUnEiuV90Rjgw33p0sEC/Gezhufq/QZLzHGy16jPfhUWe/T6gpz2OPBsPVbWzpCAikijGwUiQ+0lRT7n2ChZHeC8uwCHoyLCIxhy066FRegWGGhZVidbDT2/kCiR4Gz2koce3OqtCXYhXfDwB7W71P4gEXg0VH+eKsuEgT6EidGektBe8e43hP2cwyax+hDiUZG8mbUpxDXrZfS8673yeDC5CCnCymFOd4Nlhiy9WDtRirKcvzbsDakdb46LlX507YZY4wHD7iUwSrinLIyfJpNwRmledr0X3+OCcg4OmA7qGiMHojAiMzWPQZAvEOKu/pYcN1iI505fg9WODI6i3lKj6Na0ap5UDy0gdD65ThhoDXFPP4tOr8gDPHa0hlyxqum71mgQwZLUP7BnUY7/H3q07D2HKNOFZ4N4hjj0ACfXvx0mFULSgip4vIkyKyVUR2isguEdl5OISbSMRPsNNKcvH7xHPEYkQEoNy7YREaTNMZOcnu9BR6d4uMeU/BiEbViAfX8bx69rjE5/k7ESEdhnHWyHa1pAtkufSDhoV67GQzvSSPQJaGMHxcimBpfjbFuVlaJsfY8atrH+FAeHgqqq6KoPGpnYCWRWj8XjTQk+7itrjTYWC5LXAPF0ZXxURSs4YbQ54iWOHhRhs4qexex7Yifq8QeHN+uUVQayvyPRltYEVw4qM34E0/ue1XnF1RQH1b3+BzlFG7MUepAFQX5ZAf8HuaMxzHSXwUry8U8XRmU/z6J5BlnffnxRCI338EeqJ48WnV4N0QUEqNcALrMd6HzwOgy2hJEHHUsK6MzTTSY7wPj7bNLMv3bLynSypa8I/Aj4EzgBOBpfa/bymCcTcry29NBDoWJPGpZuAtEuIaztcQYXF7aGs15CE7BmHALTVOw16e2Hana/CQOe3G3rdyTWejxU+2eQE/1UU5WtJxYsevzyfUludrieTFtisiVjqG5vA+6NlH6GYIzdaUPhI7zgBqynR4+YendoJToMTbPsJ4byxYz1xDW5+n8ttuTpjDyFteVw1GGmIW2DXl+dR7KHIRdDGanVR2L6nhkbjCETXlefjE28JycM+ib/jiurnLW7W3UFwal+NI8mJkxhejAqtfrWpvXu6XGjEn13qM4oVdth3o0NHu87y37QyuUcxK76n28ft3rXa9RRyHnlcXp7UOoyXOGNqnwXiPNYinFOeQm+3TYwzGZdj0hSKetnLEr9Ec493rGiIdUjGwOpRSjyqlmpRSh5zXmEs2wYhPWQJLIXhZUMeXEwUrRRC8TQRhlxRBR3l5CWe7PQiD1YQ8GW4jJ4Oi3GwqCgKeJi8371C238fMsjzvm0jjImO6IiEhFwNAx5EAVpnh+Ha9p87ER8bA2Zen11MGlrx7NXjg4g2h2ooC6lu9VQSNLysP1sL2QGe/p7NH3OSdXVlATzBCc3fmymcw0hEzJmaV5xOOKg50ZJ7u65ZGfBh5y+uqRNGm+tbMvcFu8/Os8nwGwt72sobiCkfkZPmZXpqnJT0s3nMP3nRqJOputHiZ74NJIi2eFu2uc7I33TRUOMsl0uLREBhhYNmyZj5eRz4DOlLM3eb42ooCWrqDdPWHMmpzMNoW025pvrUfVkfaXbxBHIkqGjxVFFUj1j11HtNa3QziWg3PrNvaRFdRtlRJRQs+KyI3icipInK88xprwUTkfBHZIiLbReTKsf6+0YhPWQJLyXg5V8AtTac4N5vygoA3L1505MOlR3mNlNepJuRpknVZFIDzMOjYnB3frp4qPdlZI+X1vmdseD42WFW79Bgs8ZEQS5F58UKHEyjIhrY+j4aFcpW3rTdER29mygzcI011dkVQLxt1BxKkCCoFDR43AI80jDV4Y+3x4PPFLsS9K7VwROEThrV7GDnsumri6akoIsOzF2aW5dE9EKY9w+dmMCoUM9/NqvBmCESiCqVGHkg923P0YqSOqtNQojocdXNQ6U+91PFsu83JjhMp0+i0swiOH1dWNojXCNZI/dzVH6Ytw/EaX0kThlLMvUawRmY/eLtf8dX+HDxHHF3u12DhJY/GUPw6uK7CW8r6oKPBpQiX10hmIlkPV6n2VAysk7FSLWIPb7x5LIUSET/wK+AC4EjgQyJy5Fh+52i4edRryq2CFJmmHrhFhMC7lR12KdMO3isJxld7GWrXqyE00usI3ieZhP1b7s1DZkUeo+S4KTGPZ6MFwxFXr0tj54C3qkLRkQ6CusoCBsJRGru8RSzi262tKCCqoN6T88EldWSw4IdeL6SejbpqRLuzKvRUcIs35LXkvYdH9q8eeUe2exg5rLpqIuop55wapygKeK8kGHSZ9+s8GgJhl33C4Jyro2HO9430hnsysOIKcoC1YPWScuWWIlhVmENBwO85ehHfr7MrnWNlMpvrIy4pgtl+Z7+UN1ndHHSQ+f1yi96A9wOXB8JRAln+Ye95HVuOrDkuTj+v0dFA1vB5YDAq5HENOGJ9UpnvqVT7YGGkYVs5csnyWC3X1flbaRnvmTqb0mVUTaiUOsflde4Yy3USsF0ptVMpFQTuAC4d4+9MiquBVWZXEsxwIRl/2rZDnUfDYmgyHLmHxYvyii9T6uCkSmRqsAy4bPa12s33dGhtov6trcj39JA53lc3w81rJMRtoV6raeE70jD2vn8umcHixUkQDLvIq2mjsltKI3jb++FmGDvzg26DZYaGUu1u921qcS4Bv/d03/EysMZBV01MPRW3sByseJuhngq7pAjOKM3ztAAaSmMf6Tzo6Mu82ptTmTA2glqYk0VlYY6nss9uDqraigJP+6XcUgQHUw+9LIKjbqlR3gyBhE5bj/tXEy2CIXP9kdxh6013xBtCXiOOiYoC1VYUsN/DuZpuhlBlYcA23jOT1TkH1W0dEYxEMz4T1s0RnuX3UeOxkE789hBLVru0/mFKE0yoCUXkP+x/v+z2GmO5ZgD1Mf/fZ78XK9+nRWSliKxsbm7+/+yddXgc19X/P3d3tWImo8BshxOHG6aG27553/YtvKVfU6aUGZI2bZomKaRNIW1TxqThOHZsh8mOY7bAkm1JFjMu3t8fs7NarWZmB1a2VM/3efaxvFqdPTNz7+Fz7gyzo12yVBUf1W5TwKZwLOxmLLTS+ZAe5QUaDmFZrqOzpfT6NpyeLZV8QOYkXWejz4MGAhzSU7qViMmJik7LRqZHi8H5iFWten9wOPgkMl2ZpeM+aJUIVuTHGnWdOm4adP1pGJGdfH/jo9odl+ZMpev1CBYVZzviNxydHj2faRxFXZVST8X4OmK6KhyJTpNLix1msCaNwKlDnhaX2I+yxx2sNAc7whpDYUDJ4DgxqiLR6XSdns0X0phKB0og1FHlRlijWsFh1lurr1uhm8PBHvv9fcnnPoJSeuikX1xr0IvKq5MSc62g1OSodmf3NVkW15blKFUgNm0frSym075BrXNQwXmPo1ZJJ6jZbKe2yfSgCBy5s7CMQo25sX/zdV5HFVLKX0op10op15aXl8/492kZJOkqvdCaaiYltvu71AyWVm0z2M8AaDU7Q0JUwCbdVI6Q3cmHWmNVIbG8xRldLYEA9kvYolFJJKrV05SGxudodJoxk44T07UyFiVpONRQK5OXleFlfmGWI34DkellHh6P80ZdLeXr8QgWO3RY9DJCTqOxWj1joJQJOu17TDbCjgBcXRVDUGO95GX6KM312zfWNM5AgpgBZNMIDsXL46aXcYF9RyD5fEIVTvaLlJJwVOLVGBIEzsvDpvfyKqXmdvulks8mhIQgksOSTq2g7XAgTK/N8zW1Mq5O+8VVx1XXybSt9yOaB6g7WVuTtk96HQG9Um1l6mGaHdcyZ/af1lASmGxpsT3sJDzd5olPKj1CZ2H59H4hpfxF7N9vHRFOpqINWJzw/0Wx944atAyHopwM8jJ9tg0oo5I7UCI4yyqs2wdqVGR6zfhkBuCUqmLLdPV6mhIdgLOWlFqmq96Haen3EmeZEL37u9hhJkSP33nqREWHDa+ZSQ5AUU4G+Vn2R8DHp1UmrYd0nJiu1cujHmroZByqMqVxujKZR6TtAAC9l0lEQVRzWj6rVSIIirHY2DVim65yHth0fh2fQaSR0QQlSPDawX6klFPq7M1CK+MGyp7besA+Xa2o4UzjKOqqWaintNf3IgdnsukNIaopzeXV5j5ba0XrKBFwPu0trDGMSuE1h39uDTAWDJPj1zV7DHlNlp+lsUCS7QyWjj6tLc2N90upusoa3elOttMgkl7QtqZsMlhZlpdpg1dtR0A5s8mu864dEEjstT1pcZFlunoys6Y0h0119jLTqWwqu/cgGJa6em7d7g7CkenOR0pedRzXyvwsMn0eR86gzyOmyZCa0hxGgxF6RoKU59tZW9P3QTqGvVmBUYngV4UQJQa/v1gIcc3MsMWrwHIhRK0Qwg+8DXhohr7LFALhyDSDWgihnDFiu/RCRxA4zLCEdXqwnCovvWjL/MIsMrzCgTCIORYZ0zMheQ4yIQEdR8hpJiSg47ipExVt8xvSpquOgLfrWGiN2FXh9PBBrWmKKl2no1s1FW+Zs4mVQY19DAq/Thp1A+HItMwYKM78IQcHJgY1onAQm7TlIHKs1U8ACr/DDifOHelDho+irpqFekrbCHTi6OsbgTm2jwvQGkYBzqe96csNtRrCOl1Vn3q1Sq4c9DXrnRlX7bAiJPnMrkS6TrMMWhkssB8EDWtMzQVncj6sY6c4LTEPRqLTgp8wec7aiI1hZ6Gwtg1YHD9nza4NqB+gDEelrcm2IY2hLBA7U9PBcBrdKg0HvXjqET1awb6a0twjdhaWkSbcCTwshHgqNvr280KIrwsh/iCE2AlcC7w8E0xJKcPAx4B1wF7g71LK3TPxXWYxHoyQ49cwoIrtn4Wll2EpyvFTmG3/HAS1MTLZYVGVl+Oa8SR+JxsSHTosWpmQ0hz7vVI6/ELM4LC5yfQcN3A2UTH+3DQzC7m215legzJMNik7OXNEK1Lm9FBDrQZVUByL3tEgQzbPHZkIRaftC1Dug5NG3YlQlCyddTYcCDM4bnfksPb9rXXYCB4IR8nMmC7PnPYnhjSGARwBHBVdNTv1VJhsjee6uDibwwP2DpE2GnAA9gzWyR4sLZnkxBHQNtac9CCpvdBZWsa1w56WDK9G5N7h3tZ1WhwEkSZiwb+spLW1qDgndji0/aCtniNgt19cb9qxYv9k2bZ/JkJRsrR0h4NyPr1SWSEENWX2x5/rBRom+66t71mtIxBUOJlQrVetUltqv6UlopPFhCN7FpaugyWlfFBKeS7wIWA34AWGgD8CZ0gpPy2lnLGOXSnlY1LKFVLKpVLK78zU95jFmI6DVVWSQ0u/vQi1XkYInBnqcWGoGW2xH2nQ6xkD9XwBpxksLYPPicOi72A5KUHQKxGE2JlVNjMWRo5bValy5pod5Wj83HKYCEXpHLIehVanCukJMSeHGmoNuVD5BRw4x5FpRgIkKB6ba1iPrtMBA+GodulhOvjVXr8OByLolGDOJI6mrppLesruIdLxKa86U0jtGEATsWCSljPopKdFr6TWiWGp51yAs0CSnhFckZ9Jdoa9aW9SSkLR6X1N4CyIFHcyk+6B3+dhUbGT7EV02rqCxP42+46AX6OywsmQh4lQRDuD5WDIg96gE3B2TE0wrB1ocBKYC+tkskFZWwf7xmydqRmOamfdFzo4Zy3uDOrYfgNj9oe9WUFKTSilbJBS/k5KeauU8i4p5Toppf051HMU48EI2Rq121UxA7XbxgQ9owyLk/GncWHo1960jptyDaIC9hwLhV89IdNqs+F30hHSMDhKc+gZCdg6wyzusOiUNoyHIrbWQ8DI0XQwAn48qK0cwVmjttZ0MRVODzUMavR2gfPGciXTNP0+1Do8C0svupmOSaNaJXdOI8cBnRLBuIPlICKttS+OBFxdpThY2ToOFmCrnF3NiiUfHr2oWBnVbsdYi8skDV5rS3NtT3vTkxv5WRmU5flt8TrpXGjrabuj2vV4VSs37GQEQhHlCBHN/koHQRlVN2ll6e3yCrF7oOEI1ZbZb5OYrIjRDjDbD1xHNNeAk5JOvYnEoAQTW/vH4naMVbpagYbymPNuh1e943RAuQfBcJSOIesBHL19kOH1sKjY3jlr6j3TKpV1knm3iqOjCecYwpEowUhUMzLoZDLfRLwkTJtuW7+9cxD0ok2gbFq73rsaydMssSrNZSzo1LHQbrq3e0BiMBJz3HSiGGBvkwUNBHi8ztuGIWPkaDo5BFY1ZrTWr5OIVpyukeNmy0iIEk1pJNgvn9VSkk4bdSfC2tFNpxmssWCEXI3n5vd5WOhgVLviEE6nm+33UpGfaZ/fgHYGxcWRgTLEQWM/xvZ5k419MxaMkJs5naZPNYBsGOzjIaMMlv3jI0aDYXIztYdYVJfaK7lS9bSePgV78mhUZ28rdHNtBafGgkrAUOseOJmiNxGK4PMIzWBPbZn9aW+jwYgmr2q/uJ3npQZNtdZsjYMSc73gXG6mj/L8TFu6YzSgr5trSnOJ2pwmPRbQHubixHlX72uexvOqdaDvRw10ht2EwKjhPnB+PI1ZuA6WCYyF9DfB0nJlYTV2W59ANjyhLIKCLO1FoGwu++l8LeXlZDrNSIzf/KyMab+bHFFupwQjdYbFjiM0HlRLO/QNdTsj4MeNIpqOav0NHE0H92HMwMFSB5TYKe9Um3rzNNaDeqihHX4n19n0fZHj91GRn2mLbiSqTFPUWmdqo67dMteATgYrL9NHSa7ftsMyGtA3GJ0MElGGcmiL/yoHBzyOBsPkWpzS5iJ9UIyV6fd/QWEWOX6vrUmZStmhzhq0WWmhBmc0dZSDbPJoIKxpAIISrLOzridLBI3ksj1edZ3BshxabfRLqTJZaw/OK7AfRNILyMDkwJ1+ixnHUCRKMBwlT4PXrAwv8wuybJWCGxnX8edlM4unVV0CioNhJ9Bg5LQ4salGUukNGzRVZ1CLbpWDEtzRoP6eVVtlrDrvk072dLqLS2LD3o7AqHbXwTKBvhEl21OU45/2uwWF2WRn2FNcRg5LXMnYjDj6PEIz7eokEzIcCCOEdsbCiWOhDgDQcjSdRDNVuoXZ0++vE4FgRFetG7Zzf9WoWoHGephXkIXfa085joeUdaZV4qpEoe1NwlQDBHkakUIhBFWl9gZzjBgoHcD24BOVrl60rKok19Z9CEeijIf0jVAnk0aHDQxGJ5PhhifCmusMlL1hl98xnYi0iyOD/rEgxRp6SgjBsoo89tsIBI4GtLNiYP+sGjXoo1XOuLjYfjmjUTS8qjSHjqGJeEDPPE1Vbkxf12ogyVbAMoURHIxYL7lS76sWXY9HmXpsR2YYrwF7Ojp+Xw0yjnb0/lgggtcjtIdFObB/RgNh3Yyj7ftqyhm0l8HR0ssKXXvOu8qrdqA2mwyvPbtnVCfbpvCay/CEdedd1fX5Gvc1K8PLvIIs2+eVWkFKB0sIsSI2nWlX7P8nCiG+OuOczSL0xMbQluVNV1wej2BpRa4tB2s4ZlDnaWaw7Gea+seCFOdO5xWcKa+RiTB5ft+0Wnxw5lgMjofweoSmIameLWWXLmg7QgVZGZTk+m1FNI3oZng9LCyyV7o1FKNblDOdrtcjWFRib3zx0Lh+RgiUXooWG2UIk46QtqFebXOypOpoagUewH4TvFoWq2WAgnII4aE+69GygdhzK9HZc3YdoXiE18DBGhgLWZ5QKKVkYCyouc5Uuu1DE7bKk4cnwpqlOUcCx7quGguGGQtGdM+MWVaeZ0tPDY6HdJ3xxLNqrEDdi1pr0EmZ6ohRBqs0B2mj5Ko/xqvW/lZKruzJIyWDpWMEq6XmFo1rNeiVo0PXbna6fyyoK9/sZvEm9Ye+I2B3DeT4vZpns8XPwLRoXE+EIoyHIrp2VVVJDp3D1p13o2BiWZ6fHL/XdrZJz3mvKs2x5bwbZdu8HsHi4hxbFUEjBrzaPbLIKNsGzoanWYGZDNavgC8BIQAp5Q6U8z6OGah9RXoH6S0rz2O/DcXVMxIg0+fRjIqo5yDYyQj1jgQp0TEiczN9lOb6bdX19o8FKdQxypw4FooC92kKRPVsKbuZsQyv0CxDAfvjOlVHqEDDwVLp2hkSoJ49pOW4QcxhsSFs1XNqynXWr90MS9+oQlfPUK8uzbE1FtjMfegcClhWZn2xM6OKc7XpLi5WBpRYPVvKyFgEqCqxNyK7V82cGyh1sB4sGQtGCEUkRQbrV0rrgznCkSh9owHddXYEcEzrqq4h/UAgwNKKPNoHJ+KBPdN0hwNUFGg/U7vlfD0jQYRAV0/ZCUpIKekZCVCm42BWldgrs+4fNQ7M2B2c0DMSpDRXm9fqMnsB1ritokO3KibrrQaR+g0CMotLsm2VXKlOue49KM2lZyRo+Xyp7mF9GZQXs3+sykwjJxuUeyAlls+X6hkOkuv3ambbJp13a7yGIlH6x4KU6tyD6hJ7DrG6tkp15EuVTaelZySgK7PiZZIW6apJEd2gQIn9CY1WYMbBypFSvpL0nvXRa3MYalmFqkySsawij8ODE5Yn0rUNjLOwKFvTsVDPQbCTIu8aDlCWr72wABaV5NiaatY2MM6Comzd39t1WNoHJqgsyNL9fY3NSNbhgXHmFWZp3l+wX5PfNjBOcU6GQU26vbG1hwfG8fs8ukZHdWkuh2xMalQFo15ku6okh/6xkGVFdnhAiYDprYlqm2UuqpJaqEPXbplr55BxoGSxTYdFpavrwBbbG5F9ODZOeUGh9t5Q74PVYInKh9F6AOv3oXc0SFRChcFenmEc07qqIRbkW1Kep/n7ZRXK+/u7zctoKSWdQxNU5Gs/U7ul4V3DAYpz/LqHUts5p3BwPEQgHNXVJXaNtY6hCbweQbFuICmXFotHaEgp6RicYL7O3p4fq9ywqk87Y7J2np7MKFEyjlaDSB1DE5TrrIFMn3o4tDVeO2LyTY/XapvZi44hY3tisQ293xGTmenWHR1D41SmsFGs2oBdwwGkRHdt2d0H7YMT5GX6dCtL1D1rxT4JhqP0jAR014A67MTqPehIsQ+qy5Qp0nYOh7YCMw5WjxBiKSABhBA3AO0zytUsw662IRYVZ+uWHkwqLmtZrP1do3EjSQuLi3Msj+WWUrK/a4SlOkpWoWuvJOxg7yiLDByshUXZcUFkBc29o/Fpdlqwe7bUgd7RuAGgSbc0l8OD45bHoB7oGY2XRWihukQ5JNHqmOHmnlGqSnI0SzBBEYx2lOP+rhEqCzJ1HcJFxcoztWqoH+obI8fv1TU8FhQpws3qmjjUO4bXIwyErsKvVYelqUfZn3prbXGJeh+s7bmmbmPD1q7DohoWi4q1ZYT6vl1+9e5Dlc0Ipyr/VGPjKOCY1lW72gYRAlZUGjtYVsoEW/vHGQtGWFqhvVYWFivZC6trcH/XCEsMZP6i4mzahyYsZX1Vx3FxsbaOKs31k5XhsXwO1P6uUapLc3SdwQVF2YQikt5R8xN02wbGCUaiLNLZKx6PYH5hluXgVHPPKDl+L6U6kXtVdlo5n3AiFKG1fzw+0EsLC4uyLfOqTrRcrCPf1ACbFf0hpYzrUT0sKs62nGlS15bePYi3XliWxaO61w/K/rKqP5u7je/r/MIshIB2i/eguWc0vn60sKg4m+FAmKEJ806LcrSPPq9ZGV7K8jJt3YOSXL+uzW5nbdmBGQfro8AvgFVCiDbgU8CHZ5Kp2YSJUITnG3s4b3mZ7mfsKK7BsRD1XcOcsrhY9zPl+Zl0WRx7vr97lOFAmJXz8nU/U5GfZXmcetvAOJ1DAU5cVKj7mbK8THpHg5Yief2jQZp7Rlk9v0D3M/MKMxkPRSxFG8aDEfa2DxnTLchCSiwpxnAkyo7WQdYs0KdbGXMMukesKYZtLQOsMeDXbuTp9dYBjlug/9zU6LTVNbHtUD8nLirUjb6pGRKrdF871M/q+fm6U+7UKKJ1fgdYVJytG4Gzfx8GKMn1U6lTRmV3VPu2QwPk+L1x+ZKMgiwffq8nXgJqmm7LAD6PYHmltoxQa/8PWcxyb28ZBOB4g70xwzimddXGfV2cvLhIv3exJIcMr7Ckp7Yc7APghIXa8iPDq2TcrazBQDjC7sODhrK5PD8TKSfLes3g9ZYBhVcdHSWEoCwv09L+llLyessAq+cZ8Borb7JCV+X1RJ37qtC1xisoe/u4BQW6QTpVJvdYeF47WgeRElYZ3YN867y+fmiA6tIc3bYDO/qjpW+cvtEgxxvYKeX5mfRY5bWlnxy/Vzd4VJbnRwhrvI4GwjR0jRjaVOX5mYwFI5aqo15v6Qf096zP66E010+3hb7JSFSyo3UgJa9gbW1tU/eBEV1b+6Bf9/pVmmBd11uFmYOGm6SUlwLlwCop5RuklAdmlKtZhD+8eJDhQJjrTlqo+5nq0ly8HmEpg/XQjsNICReuLNf9THl+JsMTYUu9Jg9tPwzABSv06Zbl+xkLRuJnZpjB4zuVQPAbDBzN8vxMIlEZr1c2g79vaUFKY37VGm0rjdT3b2slFJHG9yGmGHuGzdN9dGc7I4Ew5y9PTbfbAt2N+7roHg5wvgG/8wutR132tg/R1D1q7j5YEIwtfWNsbx3k3KUG60EVYhbodg8HeKW5z5CuHQera3iC5xp6DO9vUXYGXo+w5HAPjoV4al8X5y0v03U05xdm4bM4ACYcibJudwdnLynFq2MsCSFixoL5dRYIR3hkx2FOrS7Wje4JIWI9MNZKyR7b2c7xCwt0a/9nGseyrnqpqZedbYNce+IC3c/4vB5qy6wNZLr/tTbmFWRxvEGAxqpxvbmum9FgJKXuA2uy4/Gd7ayozIvLST26VvTIqwf66RiaMJSfdhyBx3d2UJrrNwzUWXUGW/vH2N4ykEI3WTeCH9rehs8jOGdZqe5nrK6B4YkQzzR0GwauS204ro/tUuyU8w3oluVlMhqMxI8KSIWJUIQnd3dyztIyzcnMoOyt4hy/pfv65J4OIlHJeQbPy6ojoMjhDk5aVKjruIL1tfVyUy/9YyFDXuNry9I+aGd+YZZhxVV5fqYlOdDYNUJ954jh2rIjX+wg5TxdIcRNSf8HGAS2Silfnxm2ZgcGxoL8ZGMDF6wo5+yl+sJFHfBgtq9pLBjm55saOWFhoamIQPdwwFTZTdvAOL98Zj9XnTBPt6wIJjdC70iQnJLUI5XHgmF+81wzp1YVsaxCPzOWyK9erXIiuocD/GRjI5esquCkxUX6/Oar/AYMSwlVDI6FuH1dHWfUlnCOwXNTDcEekwb1WDDM9x7fx/ELC7hsTaU+vxaVWDAc5eZH9rC0PJfrT9Y3kObF6so7TZZiSCn57mN7yc/0cc2J8/X5VSNPFgz1n25sxOcRvOW0RbqfKcm1HtX75TP7CUcl/712se5ncjN95Pi9lpTZbU/UEY5G+cB5S3Q/4/EISnP9lu7DnRvqGZ4I8cHzl+p+xuf1sKAo21L5yP2vtdE5FODb1+vfB1CcYytK4t7nmmnpG+e7bz7B8HNWy5Me3dnOzrZBbnnT8ab/Jt04VnWVlJIfPllHRX4mbz+zyvCzNRYO212/p5NnG3r40pWrdDMiYK3SIhyJcvu6OqpLc8wZayadoVea+9hysJ8vX7XK8HPleebP0FPlZ0V+JtecpC8/y/OsZb7rO4d5YncH7z2nRtdgB+W+vtTca4omwN2bFJn8plP0g8GTWQZz97Wpe4S/vtLC/5y+WHeSpEp3KBYM1itFT8Svn21mIhTlv0/Tl2+ZPi9FORmm5dtIIMy9zzVzRm2JYQl/YqbFjF1173PNdA0H+H/n1Rp+rizPT69JXsORKD/btJ/aslzWVutXMZUl8Ko3AyART+3tYk/7EDenkMNKoMG80/bjjQ0U52Rw6Wp9u8eq07KjdYDN9d18/KJlKeVLfeewKZoAP9nYQKbPw3UGtlR8DRztDBawFvgQsDD2+iDwRuBXQojPzyBvRx13b2pkOBDmi1caC22wNvXopxsbOTw4wdevXaMb9YbJRWBWeX33sb0AfOXqNYafi2dYTG6EHz+l8Pvlq1Ybfs5qJO8H6/YRCEf4ytXGdNV6crMC4UdPNTA4HuIbqe6vxYjLPU830T44wTeuPU43qwCJDqw5ur97oZkDvWN87Zo1hgq3KCcDv89j2sF6YlcHzzb08JnLVxhmFfIzlVIzs/d3y4E+/ralhfefV6s7iAIUx6Ikx296PdR1DPOb5w/wttMX65bFqbASMX29ZYB/bm3lfefWpnTQy/LMK576zmH+8NJB/veMKsNINMTq/k32uA1NhLht3T5OrSricgNHPs6vyfvQOTTBTzc2ctmaSkPjFpRySXUqXSqMBMLc/MgejltQwP+eYWzgzzCOSV31TEMPrx7o5+MXL0tp3Kp6KlU/63gwwjcf2s3yijze9wZjw9JKydVfXjlEQ9cIX75qtW4JMFjLUkejku88tpd5BVm866waw8+WWYiGP7yjnddbBvjsFSt1z+lRaJrXp1JKbn5kD3mZPj560TLDz5bnZzIwFjJ1XMKutkH++moL7z6nxtBpyMrwkp/pMy07b318H1kZXj596QpjXi0EFdsGxvnFM/u55sT5hoFVla5ZXu/e1Ej3cCC1nZJn3q7qHg7ws02NXL6mkrOW6AdrQdUd5hzXP72s7IMvpgpeWNgHwXCU7zy2lyXlubzt9FSBOfP39YldHbzU1MdNl6/UPLcukSaYs6eklHz74T2U5vr5wPn6QU+Vbs9IwFQP/taD/Tz4+mFuPH+J7mAeUCYUZ3jFjGewzDhYi4BTpZSfkVJ+BjgNqADOB95j50uFEN8UQrQJIV6Pva5K+N2XhBCNQog6IcQVduinAy19Y9z3wkFuOHWRYa24CrOjrncfHuQXzzTxX6cu4vSaEsPPTm6u1Ab1C/t7eHRHOx+5cJmh0QtTM1ip0Ng1zK+fbeKG0xaxNgW/ZRYE147WAf6xtZX3nlurOxxAxWRkxBy/v3/xAG87o8qw7wgmSxDMCMXW/jF+8fR+rj1pQcrnppaamaHbPRzgx081cvGqCi5cWWH4WSEElQWZpjILo4Ew335kD6vnF/DOs6pT0jWbCQlHonz137tYUJjFJy5envLzZh0hKSVfe3AX+Vk+Pv/G1AGN8rxMukzsi2hU8s2HdlOWl8nHLjY2aEBZEz0m+j5UBZHr9/KZy1em/HyFBcPuRxsa6B0N8q3rjjcMEIA1h/D7j+8jHJF8NUVAA6CiQKFrpp/yx0810DkU4OY3HW8YeDgCOOZ0lZSSO56sY2FRNm89PbVzW1WaQyAcTbknf7qpgbaBcW550/GGQR+Y3OOpDKDB8RB3rK/nrCUlKQMHVvo57t/WxvaYI2RkAIIiN/rHgoRSDM+YCEX4/uP7WD2/gP86VT9LD8oBxHmZPlMBiQ17u3i2oYdPXbpc90ylOK8ms01SSr79yB6Kc/x84hKTMtnEfX1xfy/r93Ty4QuX6k4cTebVjO7/3uP7kBK+lMIRAkW+maF5qHeMe59t5i2nLuTkFE6blQqTO9bXEwhHTQXZzcrigbEgd26o59xlpab3gZl7cN8LB2juGU0ZqFXpdptwWiZCEb7z2F5WVubzvymctuIcP16POafl4R3tbDnYz2cvX6nbM5rIaygi48e36CEalXz74d1UFmTyoQv0K0ogVl6fl2k6iGgXZhysCiCRixBQKaUcT3rfKu6UUp4cez0GIIRYg3JuyXEokcefCSGOyqmVd6yvRwi46XLjyI2KqpIcekeNz2wIRaJ8/p87KM7x87VrTBg5JjNC4UiUbz20h0XF2dyYIhoA5gWMlJIvP7CL3EyfKQFjVilKKflWLHphxuhVzzJIFRlRFM1esv1ePnNZ6ueWm+kjO8NrKtN06+P7EAK+ZOI+eDyCklxz9di3r6tjIhQxZfSCUiZopgfrJxsbaR+c4Obrj9OdfpWIMpO9Cb974QD7Oob5+rVrdA/xS4TZUoR/bG3lleY+vvDGVbpnV0ynm5rfB7a18XrLAF94Y2pBDooBZiYC9+SeTp5r7OGmy1aY5rdrKLVCq+8c5ncvHOBtp1fpNusn0+0dDRJN4Qi9dqif+7e18f7zag3LZ1RUFGQRlamzsPWdw/zmuWbeunYxp1bpl7ocIRxzumrD3i62tw7yyUuWG2aEVFSZGLjS2DXCL2NBwDNTRO1ByXYGI9GUB17/dGMDA+MhvnaNcWUBTMrmVHtxcDzErY/t5ZSqIt5iUBqnQh2ekSq4+LsXDtA2MM5Xr15tKmhgxmkJhCPc8ugellXkpQx6gfkKi8d2dvBKcx83XbZC9+zARJjJXihZwT0sLMrm/SkymGC+euXVA308vP0wHzx/ScpAsErXjP74zmN78HkFXzATnDPJa13HMH979RDvPKs6ZRAYlOCcmaD1nevrGTK5D0py/XhEapuqZyTAj59q4MKV5VyUIlALytoKhqMpJ/7d+1wzrf3jfP3aNSntCG+sxD7VfR0Lhrn1sb2smV9g2AoQ59Vk6eH929rY3jrIF964ypRtUmahTNIuzDhYfwJeFkJ8QwjxDeB54M9CiFxgT5r5uR74q5QyIKVsBhqBM9L8HSmx+/Ag/369jfe9odawYTYR6ohnoyzWL59pYvfhIW6+/jiKdM46SkRpXiYekTp68ceXDlLXOczXrlljqv7ZbPOoavR+6cpVpnqq8mK9ManoPrT9MFsP9vO5K1Ya1nWryPB6KM7JSLkZNtV18Ux9N5+61LgkLhGlJjI3Lzf18uiOdj58wTLDc8ASYSaatbN1kL9vbeG959aYEuAAlQVZKdfD/u4R7n1OMZBSZR2n8JuCbvvgOHeur+eileVccdw8U3TNlHj0jQa59bG9rK0u5q0mBC6Yy4yNBMJ874l9nLS4KGUUWoUqdI0coYmQYiitqDRnKIFihAbCUYYNAjBSSr7x4G4li3dF6qwYmBssE41KvvXQbiryM1OWJU3ymzpyKqWSHczN9PEFE4GHI4BjSldFo0rvVW1ZLm85NbVzAakdLCklX/v3LrIzvHwpRT+TCjNr5UDPKL974QD/fdqilJUFKsw4LXeur6d/LMjN1x9vWGqVSBOMdV/vSIC7Y73B5y7Tb5SfQteEnPvNcwc42DvG101kGBJ5Nbqv48EI331sL6vm5Zsuzy0vSC3rH9jWxq62IT53xUpTNoWZ+xqJVRPML8ziQxcaZxhUVJiQ88839rBudycfvWiZ4flXKkpNTvz77mN7ycv08UkTWUFQ7sFIIGw4PKOuY5g/vqw4bUZTGVV4PeYmX96+ro7xUISvpmgPSeQVjO9Bx+AEd8fKI03vAxPP657N+2kfnOCb1xm3WsRpmiiTHAmE+f4T+zh5cRFvOtmcLLRS/WEXZqYI3oxSyz4Qe31ISvltKeWolPIdDr77Y0KIHUKI3wgh1NDnQqAl4TOtsfeOKG57oo6CrIyUacZEpFJcjV0j/OipBq48fh5XnqDfMJsIr0dQmiKN2TsS4I719Zy3vCxlullFvHnUYMEmGr3/Y9LohdQbTIle7OOEhYWGDa5W6SqDIvaytDyX/zvbnNELqQV4JCr55sNKJM9MdjCR31TG6bce3k1Jjp+PmxTgoDhYHYMTug6Amh3M8nlNZR1VVJhoVL/lkb2Eo9JU6ZoKM+VD33l0L8MTYb77lhNMGUmgCF3lYFF9ZfbTjUpN/jevXWOabkV+JoEUkT11UMQ3rjWXHQRzCu2RHe282NTLZy9fmbJ8KJmu0bP712utbG8d5ItXrtKdHJgM1VAxKsNct7uDF/b38pnLzWXxZhrHmq56YncH+zqG+eQly02vQ/XcKj099dD2w7zY1Mvn32guqAaTDpZRb+itj+8lw+vhsybKaRPpGum+PYeH+P2LB3jHmdUcbzCSORGT0XB9Xu/a0MBYKGKqhC1ON4XT0jU0wU83NnDp6krDSaaavBrQ/eUzTbQNjJs2ViG1MzgejPCDdXWcuKiQ607SHxSQiFITA43+saWF3YeH+OKVqwx72qbwGhtTrlcZFI5E+dbDu1lcYi7TBpNHCxjJzGfqu3m6vptPXJK6lDPOa7xFQnttqTo/P8vHTSYqbOJ0U+jmna2D/G1LC+85pyZl77IKM9VR339iH+GoNO20qbwaBUVa+sb4xTNNXHvSAs6oNRf8rShIzetPNjYouv664yzZEEd9TDuAlPJV4C/AA0CXECJlqEQIsUEIsUvjdT3wc2ApcDLKQZA/tMq4EOJGIcQWIcSW7u5uq3+uiy0H+ni6vpuPXrTUVLpdhdFhopGo5Av/2kF2hpdvXX+cJX4Uw1dfGdz+ZB1jwUjKgQ5W6X7vcetGL6RetPds3k/H0ATfsGD0KvwaZ26s1B9bofu3V1vY2z7El65albK+fypdY+NArUE2m8VTMa8gi/FQRNcBWL+nU8niXbYiZd18IsrzM+kb1e+5ebq+m0d3tvOxi5YZHo6tRTcYiTI0rs3vK819/Ou1Vj54wRJW6JzLpEcX9IXugZ5RfvOcUpN/ioXStUm62ntDjepdcZz5qJ4ZfkcDYb7z6F7LgyJS0R2eCPH9J+osRfYg0WjWpqtk8ZTI+duP7mCLKThWdJWUkp9tbmRJeS7XmjSCQQmuzS/I0nSwhiZC3PzIXk5aVGhpDVaozrjOWnlxfy/rdnfykQuXxj9rjq6+jlKHRRRmZ1h22kB/vzR2DfPnVw7x9jOqTBuroPaEGhmrdYRM9j+qSDXoo21gnJ8/3cjVJ8xPOYAhERUFmQwbZFp+9WwTHUMTfPVq8zp68mwlbV4Hx0P8YF0dp9cUm3baILV8+9PLh6jvHOErV5mr3kmkq0czEpV859G9VJXk8C4rwdp4UEqbrhqQuumyFaYqmMzwmhio/cSl5gO1k4E57f219WA/D2xr4wPn1VrS96kC1rc+vtd0q4VZXptjuv6G0xal7L9LRFm+31R5vROktESFENcJIRqAZuDp2L+Pp/o7KeWlUsrjNV4PSik7pZQRKWUU+BWTpRVtQGJaY1HsPS36v5RSrpVSri0vNxcRMoN7nt5PcU5GymlEySjMziA/y6fpYP3+xQNsPdjP169ZYzjZRAtGmYUdrQP89VU1cmHeOAXjqMjO1sHYAIoaS0bvJF3tjaBGL647aYHp0jUVRhtXGRTRYGpQxDS6BZl06UReB8dD3P5kHWfUlHC1yaxjIr89IwHNzTsejHDrY3s5fqG5GuREqIcYa0WLJ0IRbn50D8sr8ixl8VR+ozqHLgfDUb710G6WlOVy4wXms3hgHDGORhUjaX5hFh+7yLxymEJXZ03c8ugeMryCL5qoydeiq2cs2onqQeoyqp9uaqRjaIJvX28+Em2Wbs+ItcgeJAys0bkPv3qmyXRt/pHCsaSrXmnuY1fbEO9/Q63lwSJ6A5nueLKe3tEAt7zphLStwUhsjy8syub/GRyRoAWjYN2mui5ebOrlU5euMDzvJxmp1vWtj+0jJ8PLpywYqzBZHqZ1tuSO1gH+9Vor73tDralR2yr8PqU0Xk+ffj8+LMKijDNw3LqGJrjn6f288bh5pjMMKsoMqm1+urGBvrEg37j2OEuBYCM5PzAW5I71yrCIK44zV72TSFcviPb3LS3UdQ7zxStXkemzFlTV4zUQVoZF2AlIGdk+j9gM1Brd18RhER+50FxJeSLdnpGgZqD25aZeHtvZwUcuNN9qAcqU46wMj+49+M6je8n0efn8G80HWkBZr1bPbbUKM5rxZuAsoF5KWQtcCrzk5EuFEInW6puBXbGfHwLeJoTIFELUAsuBV5x8lxXUdw6zYW8X7z6nxlK2AhIP55yquFr6xrjtiTouWFFuuk4+EXoZlmhU8o2HdlOam8knLSqDOF0NYahGBq2WrqkwirZ8LzYowkrpWpxugX6p2WT9sfnoYJxu3uT5Hcn48VMN9I8FU47T10JFfiZhnc17z9P7TY1714LRWVi/eqaJlr5xvnXdcZayeGDsWPzhpYM09Yzy1WtWW1I4U+hqrIn7t7Wxs01pSrW639RAhdZae7q+mw17u/jYxcstRcyn0NWIxKpRvRvPW2Lq/JREGCm0pu4Rfv2s0jN3WrV1o0aPrt3IHijGXWmun04NI+TwwDg/26yct3eOwYHQRwHHjK6697lminIyeMsp5noLE6Glp3a1DfL7Fw/wrrOqTQ1XSURupo9cv1fTEfjX1lb2tA/x+Tea6+VJREVBlqZsDkei3PrYPmrLclOe+5WMrAwvhdnaZys939jDU/u6+OjFyywflq0a18ln6EmpZENKc/189CLzLQcq9PTpjtYBHtp+mA+ct8TwzEtNXgtUGTf9ef3wyXpCEXNT8zR51biviROZzZZyxnnN1y9VvntTI0MTIb56tR39nKV5X0cCYX74ZD1rq4u58nhzfcaTNFUdOp3XP7x4kJa+cb5y9WrLAalynWBtIBzh+08oky6tBmoLszPwez2az+uRne1sbx3ks5evNDUsIhEV+VmaTks0qpwpN78wy1KrBcQm/unsg5ebetmwV5l0aTV5YfVMODsw86RDUspewCOE8EgpN6GcN+IEtwkhdgohdgAXAZ8GkFLuBv6O0pD8BPBRKaW547bTgF883UR2hpd3n11j6++TFVc0KvncP7fj9Qi++5YTLAsBUDIsvRrjkh/Y1sa2Q+ano02jq9Mb88SuDl450MdNl6+wFBFJpKulFF9q6uXRndYGRUylq0yqSh7VaWdQxBS6OvW9jV0j3PeCciaTVaUAUB5XDFPptg2Mc4/Jce9aqIzxmzxJsGNwgp9t3s+Vx8/jHAula8n8Jgvc/tEgP9qg9PiZmU6UDL2o3mggzG2xplQrJSOT/GpPFgpFonz74d3UlObwvjfUWOe3QNvRjEaVUox5BVl8xIahFFdoSfdBSqXHL8vn5QtXWovAwaRxq6V8vvPoHvxej+XIngp18mEybn18H1EpU543cxRwTOiqQ71jrN/byTvOrLIcmACoLs2hcygQLxELhqN87p87KM3LNHXkgBa0hu+MBML84Mk6TqlyuMeT6P5jaysNXSN84Y0rLQeSVLrJNCNRyS2P7mVhUTbvOafGPq9JTstTe7t4ubmPT1263Kaezpom4xKdtg9arCiAhF6hpL29t32Iv29t4V1n1VjKtCXyqtWH9oN1dXg85icyT+FVZw2oTtt/mTxGR4uu1pjyXzy9n56RAF81MeEvGcU5fnweMW0fDI6F+MnGRs5fUZ7y/EFNXvO0g7V/ePEgrf3jfOnKVZYDtXGnJWkNBMIRfrBuH6vm5fMWk4OhpvCqE6h9NOa0feZy64EW0C7BVQ8Cn1+YZbr/LhFWztqzCzPSaUAIkQc8A/xJCPEjwNxR8DqQUr5LSnmClPJEKeV1Usr2hN99R0q5VEq5UkqZsrwjXegbDfLw9sP899pFppsak1FdmktL33hccf3p5YO81NTHV65ebWokqRbipVsJQnZ4IsStjyvGqdnpaMlQe2MSR+tOhCJ893EljW12mpsWXZg6VjQSVQYvWB0UkYgKDYNarT8uzbWXbVPoajtCtzy6Rxn3btPgiBvqSXRvfWyv7SweTA4fSM5g3bZuH5GofaM3fn+TBONdG+oZCYRtRQkByvO0M033PL2fruEAX7fYi6dCbxLmfS8cYH/3KF+9eo3lbBso5QiZPs+0iOk/t7ayo3WQL11lvkE7EXpRuMSeOasROBVaZblqFu/jlyy3TbeyIGtaGc0rzbExyxcstRw5PwI4JnTV37YcQoDpCZbJUA3S1w71A0oZ6d72Ib775hMs9R0nQnHGp66Vezbvp3s4YGoctRa0Sg9HEzIMZieZTuNVw1j712ut7G0f4gtXrrJnAGoYluFIlO89sY8lZbm8zWafopbM2LjPodNWoK1Lv/PoXgqyMvjEJdbKwpJ5TXRa1Ezb+y1MZE5EUXYGPo+Ydg9uf7IOIeAzNpw2UNZW8tlKhwfG+dWzSguD1Yw/KMezaLVe/Gyzkmmz0nc0hdeC6cFP1Wk7b3mZ6aEpydDKOKqZti9fZe54gmm8athpgXCE22JO25tNHKWgTXd6xlF12m66bIWjPTuTkwTNOFjXA2MokbsngP3ANTPG0VHCv7a2EoxEeceZ9pQWwLnLSglGojzb0M32lgFufnQv568oT3mqthHUbE9iZuwnGxvpHQ3wLYt9FYlQhV1r/3j8vd8+f4CWvnG+do39vgrVmEvMsPz11UPsbR/iy1etthVxBZgX6z1qG5jk1+6gCC26hxPobtrXxea6bj55yXLTk7Sm0S2YTveV5j4e2dHOhy5YatvhzspQJkAmHja8vWWA+19TzjiyWrqmojw/EyGgNYHfxi5lpOzbz6xi5TxrvXgqCrKV+unDA5P8tvaP8ctnmrj+5AW2z07K8Hooy/PTnkC3ZyTAjzY0cP6Kci5ZbT3bBoojNL8wa8o6G5oIcdu6faytttagnYyyJEdoIhTh248o496t9swlYl5h1pR1lpjFe++5NbbpVuRnThlyoY5ZXlCYxYctTFg9gviP11WRqORfW9s4f0W5LYMV4Oylpfi9Hh7d2c663R38ZGMDbzllIZeZnEKrhaqSHJp7JnVUa/8Yv3rW2R6f1FGTdH/5TBM9IwG+dNVqW06bQjeLtgS9NxYMc/s6JdN27YnWem1VqPI+UW78fUsrjV0jfP6Nq2xl2kAJcnQOTcQPRg5HonzvcWdOW0mOH7/PM+UebK7r5rnGHj5xyXJLAxgSMa9ACdqqJVdqhqEk129pInMiPB5BZcFUebyzdZAHX7fvtIG2PXH7ujqiEtsZf1DWVuJ6be0f47cvHLCdaYPJoGqijL877rTZryKYVzB1H6TDaVPva+I9cOq0qXQPD4zHnfdAOMJtT9TZzrQBLCzK5mfvONVyr6EVmNn1X5dSRqWUYSnlfVLKHwNfmDGOjgKklPzllUOcVl1s25AEOLO2lMqCTL750G7eee/LlOdlctdbT7atCABWxTbl3o5h5d/2IX7zXDP/c9piTrIRZVGxolIpp6vvVOiq09EuXW1tOloy1MlLdTG6faNBbl9Xxxm1JVx1gr2II8DyGN362H0Yngjx3djUtRssjHtPRm1ZLl6PiN+HiVCEbz2sDHT4P5uloqBs3uwML3UxfkORKF9/cBcLCrP44PnOjNPK/Ky44RuNSr79yB7K8jL5iMmzRbSQleGlpjQ3fn/Vce85fi+fvtRelBAUh2V5RX78/oJyvgjA5y0OoEjG8or8+DoDpel7PBTh6zYj5nG6lfnx5wZw1/oGekeDfPM6aw3ayaguyaGpezKhcvemRlr7lRHLdg0wgBWV+TR0jsSVz2+fb2Z/tzJR004WT0VFgRLhVMuT//zKIfa0D/GVq9fYDpTMMP7jddWzDd10DE1YOjojGTl+HzesXcSfXz7EB/+wlRMXFvKdN5/giK9V8wvoGQnEMxjffGg3HiEc7fHaslwyvIJ9sb2oDElSev9Oq7Z/qPWKefl0DE0wECu5+snGRrqGA3z1avtOW0mun9Jcf1zODY6FuGN9HadVF1sewJCIlfPyCEUkB3oUufGnlw/R0DXC522WR4LitCyvyIvbFIGwEuipKc3hXTazokB8IJYqO9ft7uClpj4+eYm9TNsk3bw4TUXf7VacNgf6TuVVXVtbDvQpB7G/odZRZn7lPEV3qLL41sf2IcDSWPZkLI/ZaiqvTd0j/O75A7zllEWsWWDPaQNlHxzoHY23c9z1VD1DEyHb1TUACwqzycv0xe2InpGAY6cNlHswGozEEwK/ff4Ah/rG+JIDpy0rw8tVJ8y31bJiFmZ26GUa712ZbkaOJl5u7qOpZ9TSaFot+H0e7vifk8nweThhYSF/++BZjs+HWVCYRWF2BjtbBwhFonzhXzsozM5wtAlAUV5+r4e97UPK4ZIP7iIcjfL1a6xNR0vGouJs8jN97Dk8BCildsMTYW6+3vzZSVooyvEzvzCLve0K3dvX1dE5PMEtbzre9gYDZZMtKcuN0/3JxgYO9I5x85uOx++zb/R6PIKV8/LZE6P762eb2dcxzDeuO86xcTqvMCsuaP708kG2Huy33YuXiJWV+eztUPj99+ttPNvQw2cvX2m54TsZq+blx9fZk7s7eGxnBx+/eJntLF6c7nxFmUWikhcae/jH1lb+33lLLI1X1sLqefk09yiK5/WWAX73QjPvtHDWjh5OWFhI28A4faNBGjqHuefp/bzllIWOB0WsnJfPcCBMa/84h3rHuGN9PZeuruTiVfayeCqWV+QTiUr2tg/ROTTB7evqOHtJqaNAyQzjP15X/WNrK0U5GbYztCq+evVqPnbRMj55yXL+/IGzHMukNbFA4LZD/Tyyo50Ne7v41KXLHe1xv8/D0vI8dh9WZMc3Yk6b1QmeyVAzCXsOD1HfOcyvnmnihtOsD5hJhBCC1fML2B3Te99ft4++0SDfchiUWVmp8Lr78BAdgxP8YF0d5y0vs10eqWLVvAL2xO7rPZubaO4Z5VvXO9N5anB69+FBhidCfPOhPayeX8A7LA4imcbr/AL2d48wEYrw9y0tvHqgny9eucp21Qoo9k+mz8Puw4MEw1G++m8l+Pkxkwex62FlZT79YyHaByfYuK+TR3e28/GL7fWdqyjIymBhUXZ8H3ztwV1k+jx8wUGmDRQ9F5WK47azdZD7XjjAO8+sNn0QuBZUu0fdB999dC9jwTDfuDY9e3b34SFa+sa4a0M9l6+p5AIHTtuRgG4zgRDiw8BHgCWxBl8V+cDzM83YkcT9r7WSn+WzPIpbC+cuK+Ppz12UBq4UCCG4YEU5T+zqYCQQZkfrID97x6m2+8RU+LweTq0uYsPeLsrzM1m/p5MvX7XK0pkHevyeXlvCpn1d/PWVQ9z/Whsfu2iZo8ygirU1JTzT0MO/t7Vx34sHec85NZbOODKi++DrbTy6o52fb97Pf526yFEWT8UZtSX89vlmntjVzh3r67jiuErHihHg9Jpibn+ynid2dfDdx/Zx3vIybjjNXpo8md8ndnfw6I52vv7gbk6pKrLd5zGF39oS/rG1lYe2H+bbD+9h1bx8PpiGErPTa0r47fMH+Ndrrdy5vp7q0hzL45W1sLamhKhUjNl7n22iIj/LUdmIilNjUff7X2vlH1taycv08WUbky+TcUZsWMqDr7exfk8nPo+Hm9/kzLAD4qUTj+9qZ+vBfoLhKLe82VmgZCZwrOiq0UCYDXs6+d8zqhxlJkHJYn32CudrWsXammKKczL4/hP76Bic4OTFRbzPRuN5Ms5ZWsYfXzrINx7azcZ9XXztmjWOI86nVBXh93n43QsHaOoZpSA7w3Z/TCLOXlrKD9bV8YN1+/jzy4f4wHm1joMyKyrzKMvz85dXDvHHlw4SjkYdBysBzlpSwr9ea+V7T+zj1882c+1JCxwbq6V5mayszOeBbW28eqCPruEJfv7OUx0f43D2klJ+vnk/339iH399pYWzlpTw3w71ndcjOHNJKU/s6mBwPMS+jmF++a7TLE/NS4Y6YOonGxt4cncnyyvyuNFhxQrAOUtLeXxXB996eA/PN/Zyy5uOtzwhNxln1Jbg9Qh+/WwTO9sGKcvL5HNp0HNnLynlZ5sb+f4T+7h/WxufuGS55WOEknHcggLys3z8+ZVDDIwF8Xk8fPM6a2fKHg0IrbHXAEKIQqAYuBX4YsKvhqWUfUeAN9NYu3at3LJli+2/nwhF2NcxbKux8UhgR+sAN/z8RYKRKJ++dIWtsexaeGj7YT7xl20AXL6mknveeZrtnq5EPLm7gxv/sBVQBMN97zvDUQmUihcae3j7r18G4OTFRfz1xrNsNTcm4/WWAd78s+eRUsm2/OvD5zgWtKCUX171o2cJRyW1Zbk88JFzbNe3J6Klb4xL7niaYDjKwqJsHvjIOY6FLSijcC/6wWZGgxHK8jL590fPScsgg8HxEOfftonB8RAFWT4e+Oi5LLUx8TEZE6EI59+2ia7hADl+L//40NmOom8qwpEoF//waQ71jeH3efjLB85yVJKkQkrJlT96ln0dw2R4Bb95z+m2pkpp4b9+/gJbD/bjEfDzd56WFkce4D2/fYXNdcrhuHe+9STebGMsuF0IIbZKKVNOATyWdNWh3jF8XjGjZS128ddXDvHlB3ayen4Bv3nP6fHeESdo7Brh6h8/SyAc5fqTFzguuVfx5Qd28ueXD5Hp8/Db956eluMGOgYnuOyOpxkOhDlrSQm/f9+ZjjJCKu7aUM9dGxrwegQ/etvJXHOi/T5QFSOBMJf8cDOdQwFWzcvnHx8623EFBMBfXjnEl+7fCcA3r13De8517mSHI1Gu+vGz1HeOpFXfbdzXyft+p+zFj1y41HHJuoq3/+olXtjfS3FOBv/88Dlp0XXbWwZ4y89fIBKV3HDaIn5ww4lp2Qef+us2/v36YXL8Xv7w/jPToucO9Y5xxV3PMB6KcMGKcu5999q0nJV46+N7+cXTTWR4BT9/x2lc6qBnNN3Q01VGDpZhvnw2KS6nSmsuoKVvjIlQhOUWD/41gpSSh7YfZiwY4YbTFqXFCVLx0PbD9AwHePuZVWlxglQ8saudlr5x3nFWla1pbnrYuK+T+s4R3n5mlaPSg2Q819DD9tYB/veMKsflool4pbmPl5t6eevpi9OibFS83jLAM/Xd3HDaorQacbsPD7JhTxdvOmUB1aXWRwDroaFzmMd2dnD1ifMcR8kScaBnlAdfP8xlayod1bkn4/DAOP/Y0sqFK8sd9VAmo2togr++2sI5S0stH+JthL7RIH9++SCnVBWnJatrBRYcLFdXzRKMBcNkZ3jTmuVs7Brh8MA4b1hWlpYAICg9sRv2dLJqfgG1NkaS66G5Z5S6jiEuXlWZFucKlL6jp/Z1sbAoO62yqH1wnK0H+7loZUVaAoqg2BTPNvSQl+WzPdxEC70jAZ7f38v5y8vSEqRU8eqBPkLhqK2jTfQwPBFic103Z9SWpCXIoGJn6yA9IwEuWFGetn0wEYrw1N4uTlhY6Lh6KRGNXcPs7x7l4lUVabMrI1HJ+j2dLCnPjffQzRbYcbCaAfWXyU9TSintzdueAfynKy0XLly4ONZgwcFydZULFy5cuDgq0NNVumELKaXz3K4LFy5cuHAxg3B1lQsXLly4mG0wlRcWQlwHnB/772Yp5SMzx5ILFy5cuHBhHa6ucuHChQsXswEpiyOFEN8DPgnsib0+KYT47kwz5sKFCxcuXJiFq6tcuHDhwsVsgZkM1lXAyVLKKIAQ4j5gG/DlmWTMhQsXLly4sABXV7lw4cKFi1kBs6NjigB1EpPzOchpxtatW3uEEAcdkikDetLBzxHAXOF1rvAJc4fXucInzB1e5wqfMHd4TQefdg5hK8LVVbMFc4VPmDu8zhU+Ye7wOlf4hLnD61zhE2ZQV5lxsG4FtgkhNqFMaDqfqWeNHHVIKR0fJiOE2GJmYtVswFzhda7wCXOH17nCJ8wdXucKnzB3eD1KfLq6ahZhrvAJc4fXucInzB1e5wqfMHd4nSt8wszyqutgCSHuBv4spfyLEGIzcHrsV1+QUnbMBDMuXLhw4cKFFbi6yoULFy5czDYYZbDqgduFEPOBvwN/kVJuOzJsuXDhwoULF6bg6ioXLly4cDGroDtFUEr5Iynl2cAFQC/wGyHEPiHEN4QQK44Yh0cOvzzaDFjAXOF1rvAJc4fXucInzB1e5wqfMHd4PWJ8urpq1mKu8Alzh9e5wifMHV7nCp8wd3idK3zCDPIqpJTmPyzEKcBvgBOllN6ZYsqFCxcuXLiwC1dXuXDhwoWLowkz52D5hBDXCiH+BDwO1AFvmXHOXLhw4cKFC5NwdZULFy5cuJgt0M1gCSEuA/4X5WyRV4C/Ag9KKUePHHsuXLhw4cKFPlxd5cKFCxcuZhuMMlhfAl4AVkspr5NS/vk/VWEJId4ohKgTQjQKIWbNWF8hxGIhxCYhxB4hxG4hxCdj739TCNEmhHg99rrqaPMKIIQ4IITYGeNpS+y9EiHEeiFEQ+zf4qPM48qE+/a6EGJICPGp2XJPhRC/EUJ0CSF2JbyneQ+Fgh/H1u0OIcSpR5nPH8R6X3YIIR4QQhTF3q8RQown3Nt7jhSfBrzqPm8hxJdi97ROCHHFUebzbwk8HhBCvB57/6jdUwO5dLTW6TGhq2arnoK5pavmgp6K8TRrddVc0VMGvM46XTVX9JQBr66uSoaU8ph+AV5gP7AE8APbgTVHm68Yb/OBU2M/56NMy1oDfBP47NHmT4PfA0BZ0nu3AV+M/fxF4PtHm8+kZ9+BckjcrLinKGf3nArsSnUPUSL2j6Oc+XMW8PJR5vNywBf7+fsJfNYkfm6W3FPN5x3bX9uBTKA2Jhu8R4vPpN//EPj60b6nBnJp1q3T/5TXbNZTKdbErJCrSbzOKT2V8Pxnja6aK3rKgNdZp6vmip7S4zXp966ukjJ1D9YxgDOARillk5QyiFJecv1R5gkAKWW7lPK12M/DwF5g4dHlyjKuB+6L/Xwf8Kajx8o0XALsl1IePNqMqJBSPgP0Jb2tdw+vB34vFbwEFAllVPVR4VNK+aSUMhz770vAoiPBSyro3FM9XA/8VUoZkFI2A40oMmLGYcSnEEIA/wP85UjwYgQDuTTr1ul/EGatnoL/CF01m/UUzDJdNVf0FMwdXTVX9BS4usosXAdLudktCf9vZRYqBiFEDXAK8HLsrY/FUpi/mQ3lDDFI4EkhxFYhxI2x9yqllO2xnzuAyqPDmibexlQhMBvvKejfw9m8dt+HEglSUSuE2CaEeFoIcd7RYioJWs97tt7T84BOKWVDwntH/Z4myaW5uE7nCubMPZwDumqu6SmYG7pqru7/2a6r5pKeAldXxeE6WHMAQog84F/Ap6SUQ8DPgaXAyUA7Sjp2NuANUspTgSuBjwohzk/8pVRysObPBZhBCCH8wHXAP2JvzdZ7OgWz6R7qQQjxFSAM/Cn2VjtQJaU8BbgJ+LMQouBo8RfDnHjeCfhfphpYR/2easilOObCOnWRfswRXTVn9BTMTV012+6hHuaArpr1z1oDrq6KwXWwoA1YnPD/RbH3ZgWEEBkoC+NPUsr7AaSUnVLKiJQyCvyKI5gaNoKUsi32bxfwAApfnWqKNfZv19HjcAquBF6TUnbC7L2nMejdw1m3doUQ7wGuAd4RE1zEyhh6Yz9vRakXP6oHwBo879l4T30o48b/pr53tO+pllxiDq3TOYhZfw/niq6aY3oK5o6umlP7fy7oqrmkp8DVVclwHSx4FVguhKiNRYreBjx0lHkC4rWs9wJ7pZR3JLyfWBP6ZmBX8t8eaQghcoUQ+erPKE2ku1Du5btjH3s38ODR4XAapkRZZuM9TYDePXwI+L/Y5JuzgMGEtPcRhxDijcDngeuklGMJ75cLIbyxn5cAy4Gmo8NlnCe95/0Q8DYhRKYQohaF11eONH9JuBTYJ6VsVd84mvdUTy4xR9bpHMWs1VMwd3TVHNRTMHd01ZzZ/3NFV80xPQWurpoKeRQme8y2F8rkkHoUz/orR5ufBL7egJK63AG8HntdBfwB2Bl7/yFg/izgdQnKVJvtwG71PgKlwFNAA7ABKJkFvOYCvUBhwnuz4p6iKNJ2IIRS//t+vXuIMunm7ti63QmsPcp8NqLUL6tr9Z7YZ/8rtiZeB14Drp0F91T3eQNfid3TOuDKo8ln7P3fAR9K+uxRu6cGcmnWrdP/pBezVE+lWBOzQq4m8Dln9FSMr1mpq3Rk6qzc/zq8zjpdpcPnrNNTerzG3v8drq6Kv3QPGnbhwoULFy5cuHDhwoULF9bglgi6cOHChQsXLly4cOHCRZrgOlguXLhw4cKFCxcuXLhwkSa4DpYLFy5cuHDhwoULFy5cpAmug+XChQsXLly4cOHChQsXaYLrYLlw4cKFCxcuXLhw4cJFmuA6WC5cuHDhwoULFy5cuHCRJrgOlgsXFiGEKBVCvB57dQgh2mI/jwghfjZD3/kpIcT/xX7+thDi0pn4Ho3vvUYI8e0j8V0uXLhw4SI9cPWUCxdHF+45WC5cOIAQ4pvAiJTy9hn8Dh/KAX2nSinDM/U9Ot8tYt99rkw48d6FCxcuXMwNuHrKhYsjDzeD5cJFmiCEuFAI8Ujs528KIe4TQjwrhDgohHiLEOI2IcROIcQTQoiM2OdOE0I8LYTYKoRYJ4SYr0H6YuA1VWkJIX4nhLgh9vMBIcS3hBCvxWiv0uDrPUKIfwsh1sc+/zEhxE1CiG1CiJeEECWxz31CCLFHCLFDCPFXAKlEYDYD18zALXPhwoULF0cQrp5y4eLIwHWwXLiYOSxFUTrXAX8ENkkpTwDGgatjyusnwA1SytOA3wDf0aBzLrDV4Ht6pJSnAj8HPqvzmeOBtwCnx75jTEp5CvAi8H+xz3wROEVKeSLwoYS/3QKcl+JaXbhw4cLF3IOrp1y4mAH4jjYDLlz8B+NxKWVICLET8AJPxN7fCdQAK1EUynqlwgEv0K5BZz6w1+B77o/9uxVFOWlhk5RyGBgWQgwCDyfwcmLs5x3An4QQ/wb+nfC3XcACg+934cKFCxdzE66ecuFiBuA6WC5czBwCAFLKqBAiJCcbHqMoe08Au6WUZ6egMw5kpfoeIIL+ng4k/BxN+L/KC8DVwPnAtcBXhBAnxMo9smI8uHDhwoWL/yy4esqFixmAWyLowsXRQx1QLoQ4G0AIkSGEOE7jc3uBZTPJiBDCAyyWUm4CvgAUAnmxX68Ads3k97tw4cKFi1kJV0+5cGEDroPlwsVRgpQyCNwAfF8IsR14HThH46OPo0TsZhJe4I+xMpFtwI+llAOx310EPDrD3+/ChQsXLmYZXD3lwoU9uGPaXbiYAxBCPAB8XkrZcIS/txL4s5TykiP5vS5cuHDhYm7B1VMuXEzCdbBcuJgDEEKsBCqllM8c4e89HQhJKV8/kt/rwoULFy7mFlw95cLFJFwHy4ULFy5cuHDhwoULFy7SBLcHy4ULFy5cuHDhwoULFy7SBNfBcuHChQsXLly4cOHChYs0wXWwXLhw4cKFCxcuXLhw4SJNcB0sFy5cuHDhwoULFy5cuEgTXAfLhQsXLly4cOHChQsXLtIE18Fy4cKFCxcuXLhw4cKFizTBdbBcuHDhwoULFy5cuHDhIk1wHSwXLly4cOHChQsXLly4SBNcB8uFCxcuXLhw4cKFCxcu0gTXwXLxHwchxONCiHcfZR5qhBBSCOE7mny4cOHChYvZCVdXuXDxnwvXwXIxJyCEOCCEuNTMZ6WUV0op73P4fd8UQvzRCQ0T3/F2IcQWIcSIEKI9pmzfMJPfaRZCiPcIIZ6bIdqrhRAbhRCDQohGIcSbU3z+00KIDiHEkBDiN0KIzJngy4ULFy6cwtVVRxazRVfF+IjE7pH6unAm+HIxN+A6WC5cHAUIIW4C7gK+C1QCVcDPgOtt0JoWeZyt0cgYXw8CjwAlwI3AH4UQK3Q+fwXwReASoBpYAnzryHDrwoULF8c2XF1lTlfF8KKUMi/htfkIsOpilsJ1sFzMOagRKyHE7UKIfiFEsxDiyoTfbxZC/L+E/79PCLE39tl1QojqhN8dJ4RYL4ToE0J0CiG+LIR4I/Bl4K2xKNT22GcLhRD3xiJ4bUKIW4QQ3tjvvDF+eoQQTcDVBvwXAt8GPiqlvF9KOSqlDEkpH5ZSfi72md8JIW5J+JsLhRCtCf8/IIT4ghBiBzAqhFgWK/N4vxDiELDRxLVLIcSHhBANQogBIcTdQsFq4B7g7Nj1D9h7UppYBSwA7pRSRqSUG4HngXfpfP7dwL1Syt1Syn7gZuA9aeTHhQsXLmYErq46pnSVCxdT4DpYLuYqzgTqgDLgNuBeIYRI/pAQ4noUBfQWoBx4FvhL7Hf5wAbgCRRBugx4Skr5BEq07m+xKNRJMXK/A8Kxz50CXA6oyvEDwDWx99cCNxjwfjaQBTxg47oT8b8oyrEoxhfABcBq4Aqja0/ANcDpwInA/wBXSCn3Ah9iMhpXpPXlQoifxZSd1muHhesQwPE6vzsO2J7w/+1ApRCi1AJ9Fy5cuDhacHXVsaGrAE6JOa71QoiviVmanXNxZOA6WC7mKg5KKX8lpYwA9wHzUcoXkvEh4FYp5V4pZRhFGZ0ci45dA3RIKX8opZyQUg5LKV/W+jIhRCVwFfCpWBSvC7gTeFvsI/8D3CWlbJFS9gG3GvBeCvTE+HGCH8e+bzzhvW/G+BvH+NpVfE9KOSClPARsAk42++VSyo9IKYt0Xifq/Fkd0AV8TgiRIYS4HEXR5uh8Pg8YTPi/+nO+WT5duHDh4ijC1VXHhq56BsX5qgD+C8Wp/JxZHl3858F1sFzMVXSoP0gpx2I/5ml8rhr4kRqtAvpQolALgcXAfpPfVw1kAO0JtH6BIkxBiSq2JHz+oAGtXqAsDdGtlhTvGV27io6En8fQvodpg5QyBLwJJZrZAXwG+DvQqvMnI0BBwv/Vn4dniEUXLly4SCdcXXUM6CopZZOUsllKGZVS7kQprTTKDrr4D4frYLn4T0cL8MGkiFW2lPKF2O+W6Pyd1KATAMoS6BRIKY+L/b4dRQmqqDLg6cUYrTcZfGaUqZGyeSZ4TH7P6NpTQYv2FAgh7hFTJyYlvnbrEpZyh5TyAillqZTyCpRn8IrOx3cDJyX8/ySgU0rZa+IaXLhw4WKuwNVVc1tXafE1rRTUxbED18Fy8Z+Oe4AvCSGOg3jz73/HfvcIMF8I8SkhRKYQIl8IcWbsd51AjRDCAyClbAeeBH4ohCgQQniEEEuFEBfEPv934BNCiEVCiGKUyXeakFIOAl8H7hZCvEkIkRMrQbhSCHFb7GOvA1cJIUqEEPOAT6X52lOhE1gkhPAbXMeH5NSJSYmv4/T+TghxohAiK3bdn0Upmfmdzsd/D7xfCLFGCFEEfNXgsy5cuHAxV+Hqqjmsq2L3pDL28yrgayhTCF0co3AdLBf/0ZBSPgB8H/irEGII2AVcGfvdMHAZcC1KCUADcFHsT/8R+7dXCPFa7Of/A/zAHqAf+CeKwAX4FbAOZQjDa8D9Kfj6IXATisPQjRLB+xjw79hH/hCjdQBFWf7N4qUbXrsJbETJHnUIIXqsfncKvAslitqFMn79MillAEAIURWLKlbFruEJlMbwTcAhlHKWb6SZHxcuXLg4qnB11dzWVbHf7xBCjAKPodzX76aZHxdzCEJK4+yqEKICOBelbnccZeFvkVJGZ549Fy6sQwjxDPBrKeXvjzYvLly4ODJwdZWLuQZXV7lw8Z8L3cZFIcRFKKnjEmAbigefhVKLu1QI8U/gh1LKoSPApwsXpiCEyEGpk24+2ry4cOFi5uHqKhdzEa6ucuHiPxtGk2GuAj4QG4k5BbGJMtegpKz/NUO8uXBhCbEIdiPwMPDcUWbHhQsXRwaurnIxp+DqKhcu/vOhWyIohJgnpezQ/KULFy5cuHAxC+DqKhcuXLhwMdtgNOTidSHEBiHE+2PTu1y4cOHChYvZBldXuXDhwoWLWQWjDJYXuBTl9O+rgJeAvwAPJp3GfdRRVlYma2pqjjYbLly4cOEiTdi6dWuPlLI81edcXeXChQsXLo4W9HRVyimCALHzBa5EUWAXAU9JKd/hlCkhxAFgGIgAYSnlWiFECcqYzxqUsZ//I6XsN6Kzdu1auWXLFqfsuHDhwoWLWQIhxFYp5VqLf+PqKhcuXLhwccSgp6tMnYMlpQyinKewFxgCVqeRt4uklCcnMPdFFKW4HHgKg0PwXLhw4cKFCxWurnLhwoULF7MBhg6WEGKxEOJzscPrHol9/jop5akzyNP1wH2xn+9DGbXrwoULFy5caMLVVS5cuHDhYjZB18ESQryAMj60AmUE7kop5TellPvS+P0SeFIIsVUIcWPsvUopZXvs5w6gMo3fZxvfe3wfp39nA4/tbE/9YRMYnghx/U+f45ZH9hCNpi7TNIOdrYOsvWU93344fTT3d49w2s3r+ew/thMMp+e8zu7hAGd+dwM3/n4Lo4FwWmiOBsJcdPtm3v6rl+gZCaSFZjQqueYnz3L93c/T0jeWFpoA7/ntK1x+59PsbU/fsTyf+8d2LvjBJl490Jc2mt97fB9n3/oUT+3tTBvNXz/bxNpbNvCvra1po/nvbW2cevN67n0ufcfJPFPfzcnffpLb19VhpozaDHa1DXLqzev56r93Eo6kZy+19o+x9pYNfPwv25gIRdJCc3A8xLnf28h7fvsKg+OhtNCcSbi6ahLP1Hdz2s3r+c6je9KybtsHx7nup89x3wsHnDMXw42/38J1P32O5p7RtNBr6RvjrO8+xef/uZ1QmvbVX185xBnfSa+c+sDvt3DVj56lsWs4LfTaB8c593sb+dRf07f3/72tjbW3bODPL0878cA2PvGXbVxx5zPsOZwefdc3GuQN39/IR//8GuPB9Fz34zvbOf07G/jd8+nTIZ//53YuveNpdrQOpIXe0ESIC36wiRt/v4WRNNlNG/d1svaWDfzi6f1poQfw9Qd3cfHtm9l6MD22yFgwzKV3PK3oo7H06KMX9vew9pb1/PiphrTpdy0YZbC+CNRIKT8npdw6Q9//hliE8Urgo0KI8xN/KZUr17x6IcSNQogtQogt3d3dM8TeJP65tZXu4QA3/f11OocmHNPberCf7a2D/Pq5Zn7/4gHnDALPNHTTMxLkN883c1+aaL64v5fe0SD/3NrKj59qSAvNrQf76RwK8OSeTr718O600DzQO0pzzygv7O/l8//ckRaabQPj7GobYnvLAB/982tpcVqllGyu66a+c4QP/H4LgXB6FMQTuzo42DvGB36/JW1C6Jn6btoHJ/jon19Lm4O5fk8nPSMBPvvP7exqG0wLzaf2ddE3GuTmR/awua4rLTQ313UzMBbip5sa+ddrbWmh+VxjD32jQf740iF++WxTWmi+3NRHz0iAh7cf5vtPpMef2NE6QNvAOJvruvnKAzvTQnOG4eqqGNbv6aR3NMivnm3miV3OJ9dvrutmR+sg33hoNy809jimFwhHeHJPJztaB/nQH7YSSYNMffVAHx1DE/x9Sys/2djomB7Asw09dA0H+Nw/t7OzNT1yav2eTva0D3HjH7amxRHc1TZE28A4/379MHeur08Dh8p194wE+Mq/d6bNQH5qbyd1ncPc+IctaXEEXzvYT2v/OI/uaOfWx/emgUNFh3QPB/jmw3t4Pg3rHOCxnR00dil6Ph2B5J2tgxzsHVPspofSYzdt2tdNz0iAWx/fx4Y96QmkPrazg6aeUT7w+61pCdA1dI7Q2DWi6KN/p0cfKes8yB3r6/lnGoMoydB1sKSUz0gppRCiVghxhxDifiHEQ+orHV8upWyL/dsFPACcAXQKIeYDxP7VtJiklL+UUq6VUq4tL085aMopn/SOBrj2pAVMhKL8Y0uLY5rDE8qGK8/P5OdP70+LopkIRRACzl1Wys82p48mwIUry/nN881pERQqzYtWlvPPra1pcVhDEeVaz6gpYeO+rrQY7yqfF6+qYEfrIM80ODeOwrFnckZtCa394zz4+mHHNAEC4SgXrSxnYCzEH18+mBaa4WiUkxYXEYnKtGWHJsJRTl5cRGF2Bj9PU9RsPBhheUUei0uy+dnm9NCcCEcozfVz4qJC7t7UmJYo11hwcj398pmmtGSEJ8KTNP/00iEGxoKOaSby+ciOdg6kKdMwU3B11SQmQhEq8jOpKslJixwYnlAMpPxMX1r260RIWfNrq4up6xxmfRqMOnUfnVpVxL3PNjEWdK6jgpEoC4uyycv0cU8arlvVxcctKKCpe5TH0+D8qk7amvkF3PfigbQE1kKRKBX5mZTm+rl7U3pkqQRWzcuntX+ch9Kg78ZievmcpaX8+eVD9KahYmU8GKGqJIeFRdncvSk9Tvp4KMI5S0vpHArwr9ecG/Gq7XX2klL++Vor7YPOB6SOBsPMK8iitiyXuzen6bqDYc5eUkrfaJC/vOI8E6qu85MWF/HIjnaaukec0wxHyfR5+OQly7l09cwVHpgZcvFvlAlJPwF+mPByBCFErhAiX/0ZuBzYBTwEvDv2sXcDDzr9LqcIhKNICavn53PSokI21zk3tNVF855zaugcCvDaIcPhU6YQjETxez2848xquocDvNTU65im6ri899xaxoIRNqShXEy99veeW0tUwsPbnQtdleb/nVONzyN4NA2lnMEYzTefspDC7Iy0OEMqnxevqqCmNIdHdjjnU0pJMBLlhEVFrK0uTosSA+XZV5fkcNmaSh7d2Z6WDF4oHKUsz8/1Jy1g/Z7OtJQ6hCJRcjJ9vO30Kl5p7qNtwLniCYWj+H0e3nlmNc09o+xIQxQ7FImS4RW866xqBsZCPFOfBjkSMy7fd24twUiUx3amz3B79zk1CEHaggBHAP/G1VXk+L1cdcJ8Xm7qiztIdqE6RO88u5oX9vc6duDVtXXNifMpy/OnVfa/99xaRoMRNu1Lj34uzfPzllMXsWFvp+NSNJXHK4+fx/zCLB5J43X/v/NqmQhFeWpfenRzYXYGN5y2mKfru9PitAXDUS5aVcGSslwe3pGG6w5PPu9wVKalbSMYiZKX6eOG0xbxYlMvHYPOgr6RqCQSlZy1pJRV8/L59zbnVRCTtlgNMm12kyTH7+Vtpy9m26EBDvU6r1QJRSQnVxVxSlVRWnSHaoe995wagLQ871AkSlaGl09ftoLiXL9jenow42BNSCl/LKXcJKV8Wn2l4bsrgeeEENuBV4BHpZRPAN8DLhNCNKCcbfK9NHyXI6jCNTvDyznLyni9ZSBtAvfyNZV4PSItpU3hiCTD6+GilRVkeAXPNjhPdat8nrO0lKKcDJ5LC01FUKyozGdZRR7PpSElrwrdsrxMzlxSwqZ96bmfALmZXi5cWc7zjT2OMxmhsPL3fq+Hy4+bx4v7exyvJTUr5vcKLj+ukrrOYbqGnWcFg+EoGV4Pl6+ZR/dwgF2HnTsZ4ahC87I18wiGo2xJQ89YKBIlwyPikah0lHiEo8peunSNQjMdazQcieLzeDh3WRlZGZ70rPvYGj1pcSELCrPSc+0xmlUlOZywsDBtJTNHAMe8rgqEI2T6vJy7rJRwVDoODEyEIvg8giuOm0ckKnnGofxX9UlWhpeLV1XwXGOP48BNMLZez11WRlFOBk/XO5f9oViw8tLVlQTCUV7Yn57rzvR5uWR1Bc829DjOYKt/f1p1MRX5mWxMg84LRZTA0mVrKolEJc82OnNWo1FJOCrxez1cvKqCl5v6HGcYVYP7hIWFLC7JTpMcjZLh83D5cZVISdqet6I/K3m9ZcBxsEOlubwynxWVeTzXmIYAeljVx+nRc2qwV6W5t33IcU+8qo8Wl2Rz0uIiNqUjwRHT7zMNM9/wIyHEN4QQZwshTlVfTr9YStkkpTwp9jpOSvmd2Pu9UspLpJTLpZSXSinT17VvE+OhSQfrpEVFhKOS+k5njaqqcCzO9bN6fj7bDg04ZTMeIc/2ezlxUREvNzvfgOFIFCEUQXFmbQkvpiUrpgofwVlLSni1uc9x038wQaCdUVNKXecwQ2kSaBleD2ctKaVrOECTw3KpOJ8+D2fUlBCKSMeOiyqAfDE+AV5qSo/j4vcJzqgtAZTad+c0JT6vh1Ori8jwirSsJzWwsLwij5JcPy/td04zGNtLJbl+Vlbmpy0bnOEV+H0e1laX8GIa+AxFp67Rl5p6HQcB1DXq8wjOXlLKtpb+tDWTzzCOeV01EYqSleHh+AWFAGlwsJRSmuMXFJCd4WWbw0oLNcCU4fVwRm0pg+Mh6h0OfQjHnTYPp1UVsyUdciqsyJS1NcX4PIKtDmmqgRC/T9mn46EIdR3OrlulmenzckZtSVpsiGBMlp60qJCsDA+vHXRGU5VPfp+Hc5aVEoxEHfe0TbEfakt5ubnPsZOuONSC1fMKKMzOcCzvp9o4pUQlbDngbA0Fk2huOdDnuJdPcSwFtWW5lOdnOr7uxGCvaou87NAWSbTDzqwtYWfroOPe9VBYed4zDTMO1gnAB1Cic2rJxe0zydRsg9qTkO33snp+PgD7OpxNxFGjbhleD6dWFbO9ZcBxz1QoFjkApcZ9V9ug4w2oClxQImWt/eOOa55DCU7GadXFjAYj7O925rjEFZjXwylVRUgJO1qcCfJEp+206mIAxxOB1Gv3ewUnVxUBODZaEvlcM7+ATJ+HHS0DjmjC5HpaUJTNvIIstqWBppIVE+T4fayZX+D4GUHMGfJ58HgEp1YVsSMN/XdqZA/g1Gplf6bDcfH7Jmk2dA07z4QnGKynVhfTOxp0XCIZX6M+hWYoIh3LuyOEY15XqRms4lw/i4qz2e0weDMRjpCV4cXn9XDCwkK2O5QBiQGmtTGZ6tQxSDTATqsppql7lP5RZ6WMqkzJyvCyan4+rzu87kQeT15cBMDrLU6dtsl9evLiItoGxh1XLiiGpyf+vJ3zOKmXT1xUBDh3+tXgtGo/DIyFOORwCJNareHxCE6pKnLMY6JDfUpVMULA9rTZDsp1jwUj7HfYj6Rmm4QQrK0uTpt9kxFbP36vJ600T60qIhiJsqvNmT5SM5YzDTPf8N/AEinlBVLKi2Kvi2easdmEiYQM1uLiHHL9Xva2O40+TW6W4xcWMhqMOJ7UFgxPOkOr5xcQikjHo3DVUgmVJpC2yFuGxxOn6dSAm3TaBCfFBPlOh4Z2KMEJXlKWi9/nSdtzz/B6KMvLZGFRNjvTICxAcdp8Xg8r5+Wzz+EzUuhOrqcTFxU6vp8KzanraV/HkPOyy1iJoEqzqXvE8bSqxGDFmvn5DE2EaXdYl6+WCKo0oxLqHGbCQ5EoXo/A6xHxveR0jYYT1v2aNNE8QnB1VShKZoayxpaW59HkMHAVCCm9CqDIgN2HhxwFAhNlVVWJokud6hM1WOnzCI6LZe6cyj81owFw0qIidrYOOpJTcafAK1hYlE1Znj8NRvwkTdVpcxqwUjMaoFz3rsNDjqpLEq9b1XfOHY1Jpy1d9kNiIHn1/AIau0YclXAm6vlsv5fa0lz2ObUdwpM0J2V9GhyNhOs+2DfmaJBZYsAvw+thWUUee9O0vzO8Hk6I2XbOr3v2lAjuAopmmI9ZjXiJoN+LxyOoLc/lQK9DxyVB8CyvyANwXHao9LcownFVLNOWng04abwCjjdMomJYWp5Hhlek1XEpzMmgsiCTxi5n0R31GakRvRWVeWm5nyqfACsq82hIg5GdSHP1vAL2tjt3XIIJwndFZT4He8ccp+bD0amKrH8sROeQ8xrtSWeogKhMx16SCXspXcpMxo2XNfML00Rzcn+unBfLrqdtjQoWFWeTn+ljT3t6RlXPMI55XRUIR8n0KQ5RbZmip5zIASUjNikDAuEobf32M6SJssrjEayYl5+2PSCEYGWlsgcaHJYdJhqeK+flMxwIO5JTidkmIQQrKvNpcKifEisXVsxTr9uhzkuU+fPyCYajtKTjefsmZb5T2Zy4hlZU5uMRsCcNzot63avm5ROOSkfZoWA4SSfPL2Cv4yByzNHwxQK+Xo9zpy0i4wHPVfPykQ6DfsGk571qfhr2d4IdtqAwi7xMn2ObKdG2mUmY+YYiYJ8QYl26R9/OFSQ+YFCav52mpEOx3iavR7C8Mv3CcUmZ4rikI5Lni9Esy8ukLC/T8YYJJ1y7EuXIdx6BSnpGyyvy06JkAXyqoT2vwPH9DCZEeEAxWpp6Rh1FCUNJNFfNz6d3NEi3g1JOKeWUKO7yyjwiUcmBHofrPjw1YgakQfFEEwR6LKLpUPEEkxQupCcqrtJcVJxNrt/r2BlKVBR5mT6qS3PSwOfkehJCsGp+vuP7eYRQxDGuqwLhSDyDVVuWy1gwQvewfTkQjsi4/FtakQtAY7f9tRBK6BcFRabWdQ47cgITZUplQSYFWb60VFmoNJeVKwFQJwG7xD0FsKwij8auEYfXPUmzICuDinznQcXETM6yCufXnayXl1XkcaBnzJm+i0TxxOyHbL+XmrLctASV/PHgl/OsWGKQChQdcrDXWXYosQfL5/WwvDKPPTMRQHdAMzFDDUqwt3s44KitJLE6SQjBsoo86jud28qzpQfrG8Cbge+SxtG3cwnJXvnikhxa+8YdlUoEEmpf8zJ9LCjMci4cE0oE/T4P1aW5js8MSIxwACyryHVcdhiMSDI8yrUrNJ2XsugpMCfNr6HoVJpLy/PoHg44mgY0GcmcvPZgOOrIYQ8mOYJLYwaBk3saiUqknLz25RWKk+F4uEuCQF9anuuYT1AaqdUSwcXF2fg8gmanGeaEfqn8rAzmFWQ5rndXShkVmmomvNnhWNxQUiRuaXleWvgEpgRrnGbsjxCOeV0VCEXJimWwasqU/eVEXoejk2WtqlzZ32WfXrLhuaIyj4GxED0j9numErPiQghWzstPyxCq6Y6GE8dy6p5aVpHHSBqyYmp5sEqzMQ17359GBysxcweKzA9GorQ6yIolZx+Wluc5Hj6VKEerS3PxCGd6KRiZ7liCs70YX0OeSZqObbGEdb6wKJusDA/NDq5ba51Deq5blUMrKvPSmqGeSaT8hsRxt2kefTtnkNgzBFBdoggJJwfkhsKSzEQhUZEewygjwSuvKc11nnHQoHkwDcbrVJo5tPaPpanmeTLjMhaMcNjBYXzJmcvashwADjowipMFUDqyl+FoMp+5MT6dCLXJcgSAJeWK0klnlrUk109+ls/5ekoILPi8HqpKchwfjptco11dmuPoucdp+pL3pzM+wxGpsT/HnEXGEyLEoBjqPSNBx2OGZxqurkrKYJWqcsCJvJpcX0U5fsry/OkxuGN7qybG46E+Z8Zs4l5dUpZHcxr0nhoEK89XsmJOnJdgkn5KT1Zsqh5dVpHHfqdZsQSa6ciKBZP03dKYwe3E1gmFpwZ9a8tyOdQ75rA3cGpwelFxDgec7JukqpLqtOzFKD6PwBOTy9WluRweGHdUtp9Y/eHxCKpLnLW/JNs36QjyBBN67kAJ9vaMBB2dyZdoM8wkZv4b/gOQmKIEpUQQcJR1SJ5iUl3qvOxQPWNIRU1pDgf7Rp1lcZKUVzqMrXDStdeU5hKV0NqfBsfFN9W4cHJwXvJzT4+wmCqA0sJnkjBfUJRNhlc4MjKSI3BZGV7mF2ZzyIHwjUQl0YSsmBDKeNh0DGLxJToZaaKZaLzUljl3hkIJQy5Umk4DC8nGZU1ZDuOhCF0OysLUUfqTfCryzmmwxsXMIzGDNb8oC69HONIr4Wh0ylpYUpZHU49zB2vS8HS+tkLhqXu1qjSHnpGAo0PME/WeEIKlDqsskoN16XA0tDI5I4Gws70fTm9GPPHcR4ClZWlyLJNsp2AkSoeDgHfyvawudRakS656qlFlqMOgZ0aSXI5KaOlz0iM31VmtKXPmWCa3QCwqzsbrEekJSqv2d2kaAt3R2TNF8JhHslKIO1gOF80UpVCSw8BYiMFxB+VnSV55dVkuE6GoI4EbDE81tmrSsLiDETnF0EyH8El2CBbHntFBh04wJBgDJWnMDMVoFuZkUJDl46DDCC5MCnOvR7C4JMchn1NpgrJG03I/E7I41bGMixNMCwKkKYszVeHm0jsadHS2WmL5jcqn88CCnEYTcGQcTOMzFliYI2WCxzQmEjJYGV4PC4uyHe5Zic8z1XlxJPunGWA5eIRTmTrdOAan+llqyhQn9GBSnlbkZ5Kd4XVsePo1rtupbp4S/CzLTUv5ukqzMCeDkly/4yxJ4pqsTZPMmxZQczAgZrKcT6GZ4/dRkZ/pzGkLTw0kTmbF0ncva0qdZQOTK4kyvB4WFWc7KtkP6wRlnNois6UH65hHKClFqUYGWxwYRskRk6qY8e5kVHswKbKjCh6nNfj+pOyAU5rJi7smzmf6szjOlMPU0tBsv5d5BVkO+ZzqCIIiKA85ikJNFWqgPPt01D37pwj0HEfrM7k8CKA2LeWhMl7jD0pkbzwUcdjfkFyGEhPqDp59OLlEMA2OS3LEOe5gOVRoiWtJDSw4zeC5mFlEopJQRMan/oHzgUyRqJxq1JXk0DUcsH1+W3IPqt/nYWFxtrNyrOj0MllwWHYYnu60HR60X46VHKwTQsSqVpzs/elOIDg3uJOdtj4HgaXEMe0qqkocOunJDnUa5Gg4KehbXZrL8ESYPpvnqYWTHGpQ5L1Tx3Kq7kyPLZbMYzASpd1ma0XyOgfnbSWJxzDAZILDkS0yW0oEhRDnCiHWCyHqhRBNQohmIUTTjHM2i5C8aDK8HuYXZjlzhsLJDlaayg49Uw1iSHN0MA1ZnOQSwZJcP/mZznpxkvtGvB7BouKctJQI+pKcjPRkhqZGhZ2U3mkJtWqHWZxkhxWUrGDPSNB26U0oSVCqfKajPHRKFC5NQYDkskNwWuIxtURQzQY7ctiT+FxQlEWGVzgr80gqEYwHFmZ5ButY11Wq8a+eWwXOZUs4ac2q5Tl29VRywzo4N8CSgwwqj3b3gJRSORQ8Se5LB+VYAQ1Ho7rUYZ9PJDpFjyxMUzmW3zddRtnVo1pBNaf9rMl9p/MLsvD7PGnOYDlbQ6Gous6n9po7ed6JEz0BitTqF6eZWg2b0W7J7uSU0KTr7nFgi8QcS3UoWo7fR3l+Zlrt2pmCmW+4F7gDeANwOrA29u8xA60MweLiHEfnQ4STIuTpqCtN3oALirLxez2ODKNQeCrNtGRxkspOhBCO+2aSFQOoJW3pS03DZOmAXST3YIESFW7tH7c9ujas4bjUOuzF0eTTobINxx3W9JWfSSkJR5PLWNNTyunTCCw4U+JTDYN0DPkIJV27z+thcbGz/oHkQA0oZbxOSzmPAI5pXRUIKfsrMYNVXZJD/1jIdgYiec06LUsKaxhg6XA0EmV/QZZShmZ3vYaj04NL1Q6zYtqOhlJ+Z7dHOjmTo5aEOg0CTc02OZPPyVMEQVmT7YPjtqsWIlEZD6SCOpwhx5FNEk7O1DosOwxHpq+hmrJcuoft9waGolODHWoPs9NqBV+SfQPYthnV0sKpLSC5jATCtieFJvdYgrKGnGZBfbOkRHBQSvm4lLJLStmrvmacs1kEVRD4pkTzsx1nmxIfcF6mj9Jcv/MMVgKPXo9gUUm2oyyO1oFsTrM4+jTTy2dVidMMliokpwpeJ0M+kstNVT7DUUn7oL0mXb0MFthXEJo0S1Qjw25Ub/r9rElTxMyf7sBCkpOhBhYcR5y90xWkoxJeTWco12GkdHoDcDqGfBwBHNO6Ss2STMlgOewXDke1s672ZYB2CdHgeIh+m+VYyQE7UEsjHco+3/SgjX05pR2wCobtD2dILhlTadp9NsrZh9Onp4L9wK/WdVc5rFrQyj4ovWL2g3SR6NQSwcUOewMng4nTS1ft0owklcKCoucdOdRJjmVlfhaZPo/trHc8c6dR/eFkPybroyqHQ+G09s5MwMw3bBJC/EAIcbYQ4lT1NdOMCSHeKISoE0I0CiG+ONPfZwQto3hxcQ7dwwEmQjZrsqPTa0AXO1AKCs3pi8ZpL07yZEKIjZd2asBp0HTSi6OnbIYmwrbHeYajyjkjampa4XMmFI4zo0Ur4jopzB2WdiSWMsbLWG0KyvD0a3daHhqOTg9+KEM+sh32S02N7IHzwEJypk2h6bR5fnokTuXTdklGdLrBmo4hH0cAR1xXzSY9peqiKT1Ypc76FcJRiXdKWZLfUVmSlgyIZ8Vs8qgXsLPtDIWn6/vinAxHckrLaat2mB1KbjMAZ9PvkgcwAeRmOivHCmg+b2dDCpKzTRCbmNxrLxuoFUh12hsYimqVwzuzHcKR6fqjpjSHtn5n2UBfUjawpjTXdjYwnNS3rvDorMc+GJluK1eX5NIxNGHf/tagORMw8w1nopRaJB7eePtMMiWE8AJ3A1cCa4D/FUKsmcnvNIJmiWDM2LQdhdFKezr1ysPTBY/TXpywRnRQGdVu/8DdsEYkpqbMYVRLo2lRdQgcCTSNawfnJRPaZTcO+xqSenF8HpEGPifvaWFOBoXZGQ5Kb6Y7Q0IIqh2MhtXq6wI1CJC+yN4kzfT1SCo0nQ350FIUNaW5jAUjdNssD9UOgDgf8nEEcER11WzTU6oxm+mbnsGybcwm9WiAs6i5GgxK7tEAJ+VY08vDq0tzabc5lCJ58h1Myin7TqBWNYTT/iYNPVqaazuoqFXGCEo5llP5PKU00mFWNbmXFZTnHbCZDdTSS+CsNzCewdJ0NOzrZC17JCqxNXBNK3MHzgKJWpm7hUVqb6D9605ek1Wl2UhH9uIs6cGSUl6k8bp4hvk6A2iUUjZJKYPAX4HrZ/g7dRGORBEJAxRg0sGy2/SqlRmqLnEWjUg+swQmz8Wxa2wlTyYE51kcZdxoemkmN/xCQl+b7YZsjchJGq4dpirveQXKYAK7/WJaUaP4gbu2o6PTo5ngbCrZ5IHd6XOGwvFM2/SSEWeBheiU+6nSdBJY0CxtcVguo5Rw6QUB7D+nac7lHBjVfhR01azSU2o0Nytjco3lx/qRbGfHNTK5TspzQhqyanFJDkI4CVpND4Q5OSNIa4IqKFFzp5m7TO+k86tOurW7T7Uzd/b3vlbwT6XpeMhFgnwudziiPnnIBUz2DtlZQ0ZBuuYee5UAWr2GTrOBWpk7Jz2RWpk7iOlOm72BWm0Afp/aG+jAoda9bgd7J8lenAnoOlhCiHfG/r1J6zXDfC0EWhL+3xp776hATVEmlootLskG7EUOVJpa5UJ2oxEwfbS0ShPsR030IpjgIDMUnc6nUwMuqGEQxyce2r326PSNneP3UVmQ6SAKNd3AiJ9b5bC+X6tUzG6ZTFBX2dp32iaVjlZ56Hj8OizR1GiqVWjaH/IRjR2IrFWGAk5LPKYPj3BOUztY4SR7mXw/J7PBs8/BOoq6albpKa0MFsRKzx2UOmk1mLfZHMqjFeHOyvCyoDDbUdBqWoDFQQ+q1qRDUGRfa/+YrevWktFej2Bxsf1sgdZgJyeTg7V6zUGRJ3bLsbSuWwjhqEcuuS8QnAU+tYZZqTSVbKD1gJpWryE4mySoJZed9DAbZe7s9gZqZe4g1hfsIHOn1foCzrKBmUc5g5Ub+zdf53VUIYS4UQixRQixpbu7e0a/S6u0pzwvk6wMj6OJaskRsriT4aBUYlokz6kzpNOLAvYNuLBGRKI0109epv3afi0l63S8tJZAA7Xs0n7dPEzPuNQ6yOKENMpuYJJPOxG4OJ/eqcbakrJc21lWrQZYhc8cIlFJm42pnJNGgXYQwJaBpaMc01HKqUfTiaJIVj4Li7KV8lAHQZVkmpOBhVlZIujqKhLHtE+vjLCbcdIrIQpHJYcHrBtgWr0pKk0nAQGtzDDY01F6MrqmNJdQxN4wIj2aToY7BcMapVMOyuInHfTpGUuw1yOsd91ODqzWyrDPL1QGG9mReWqQzquRwQJ7ayiis85rSu07GlqZO3USbXozd/ZLdrUydypNuwc3a/UaFuf6KczOsKU3w5EoUTldv88EdL9BSvmL2L/f0nrNMF9twOKE/y+KvZfI3y+llGullGvLy8tnlBmtKSZCKOcs2c82TTfeax2e35M8Whqc9+JoNRjmZjo7lTwYma601YMX7V57UCOaBzia0qZV4w7OolDBSASvR0wT5uq4VTtp+XgETmM9jQYjtsajapV2wGTNtx1lq1XKqPIJ9hRZWKMkwTFN3dIJh4EFjeERpY6HfEw3NnxeD4uK7WcEtDK34Py8opnCUdRVKfVUjK8joqsmQtoZrKqSHNoG7GWIQ5HoNFmlju62U9KsBgETq0Eg1teVRtmvGmB29mrAwCkAm05brM1Aa3iMkyBYMo9ZGV7mF2bZ5hG0HUuwZ3DH76VGO8ShPnsl3Fpl0epgo3TqECdVNZPOy3T92TUcYCxofVS7VrBDCGG7N1g3c+egxNwoODk8EabfRjYwGJG6tp2TZ5Ns088EjEoEvyqEKDH4/cVCiGtmhi1eBZYLIWqFEH7gbcBDM/RdKREIaY90XFycbb8HKyKnPeDi2MFx9jMZ07NiPq9HKT9zYGxpOxnO+mb8GvWvSt+M/cyQ1jOqLbfvYGll2sDZeRZGfE6E7Kbl9TJYDgwCvUybgyCAVnmQwqd9Ba6nJOYX2j9wN6yjHHP8zgILeoGa6rIcmh0NYpm+nmocnI+iVb4Mzod8zBSOoq6aVXpqPFbCle1PcrBiGeJ2Gxknrai5k7JWrYAAKD1T/WMhBu0YYDoyVSlLspF1SeFo2LlulcfpjmUOo8EIvTZG1OsFFats6vugTgbLSfmdXlasujSHQDhqq4RbqywaFN3kpEQwWY4uLslWegPtlN8ZlO2DvXsZ0gl82R1KoTVwBiYPbrZFUycrph7cbMduCIYj2jaT3f2t4/TPBIy+YSfwsBDiqdjo288LIb4uhPiDEGIncC3w8kwwJaUMAx8D1gF7gb9LKXfPxHeZwVgoQk6S0gKltt1+D9b0ssP4wXE2Fk0kKpFyej0t4CgzpGfAOTkcMqwRiQF1opq9SKtWGhmUkraBMXtnrGiN0lf4tN9YqhV1BGeOi369t33HJbWDNWKdpo4zVJbnJ9fvtdmYre0MqQfu2npGOv1noGZx7E1sCmn0M4KzktPkg0ET+Txgu0F7umwCqC7LcTTkYwZxVHTVbNNTE0EdBys+SdDaGpNSMhGOTDlXC5SzcuwaYCGNXllIHNVuk6amnLan9+IHNifRrMjPJNPmdQfC0WlOhsKjM12iR9OJM5Qs84tylGygnWej51hWOXBWtaYQw+R0S6syL6QToMz0qb2B6XNenDzvsM5o8doyez3MIZ3Kl8mDmx30L+qW19vLOGnZTDWlubQNjFvuDQxElM8f1QyWlPJBKeW5wIeA3YAXGAL+CJwhpfy0lHLGCsqllI9JKVdIKZdKKb8zU99jBuPBMNl+37T3FxfnMDwRthV102p4B/slbVpjtVXUOClD0Jm2omZxRm1mcbT4rC7NjdX225v8pLcJwd7J5FqT5BQ+7UehjNLdAE1O6p6TjOKFxep4VBvKVsfJKMrxU5Lrt9WLo1d6p5SH2nMywlEDZ6jM3nkees2/YL9XJF6Tr6UgHQ750Itq2i0P1ZVNDnvQZgpHU1fNJj2llh1lJzlE1TZ7aIKRKFIyzcHyeITtLInWRDBwNsLayAA7bGNUu14Gy+MRtnumAuEoft/0IG2VgyEFesG6qlIlEGK1wkKv7xYmz5lKF4/VDobm6NkPNaU5TISsZ8WMMhq1Ng9tj08L1hnGYUcv6QXTqktziUQlrRZ7mPUcS5Wmvf2trePVg5vtTrfU1u/27DCVx6M95AIAKWWDlPJ3UspbpZR3SSnXSSnt1cXNUYwF9TNYYK8fZTwUIUfDaaspU5SCZa9cJ/oEiuCxY2xFo1J32oqTBtCQTomgkyxOQC8zVB6j2W2d5kQoOq1hHJwZA3rlLJX5WWRneG1lm8ZDETK8YprxnuH1sLg425ZzGS8X0VC2ShDAegYrXsKUoU3TWQnKdJp2D9wdD+rzabeGXq9URuXTjoJUedXk00HEcCIc0bmfs3tU+7Guq8ZjmZfk9aBmnKwOZJoIatMD+4MzxoNRTb3nZDiDnsFdW5aLlNYPWdbL3oN9w1Mv27SoOBuPsHeUiKJL9Pe+1edtdN1VNlsCgpGIJj01+GdnDenZYzU27Qe90lqwH1AbD0XIyvDgSQp65mdlUJbntyWXlevWsBlttgKoOkzzXpbmcLDPek/4eIxmVpL+iB/cbNdm0lhDS8ryAOvPe/KonKM4pt3FJPQ29GTWwbqxORYM69K0oxTUTFJepoaQsNmsORGOICXkZE7f1E6yOKOBsKagcJYZ0t6Ei4tz8HqELWdIeUbT+XRynkUwoq1oPR4Ry7jYEOY6ghfsl58ZKVu7WdZxnRImmDxk2+oIZHXd52qs+/iBuyPWIppjBnxOll1a3J9BlU/toApY35/RqGQ8FNHMrts1NkC5fi0+nZ4B52JmMa5xDhYosmVxcbZlY9bI8FTPwrIavNDTe9n+2HAGi+s1GpW6st9utsDQwSpRDE+r163HY6bPy3ybZWh6QUW7o9qDsdIpvSCtnemxegHFDK+HBUVZtmTJeDBMdoaWo2GvJF7VS9rOi9JiYPXgZj0bR6Vpx2kbC0a0dZLN6dOT+lhbf0yEonQOW+vbHIsF/JIdS7A/JEkv+1tjs6/LKFObbrgOlgnoRonLlLRnY5c1BysYjhKKSB0jxp5hNBmNSJ/gGQ0oGzDXaFPbMArHQhFNmuV5meT6vfaMwkCEHI1n5PcpE9XsGppaxgDEJgnaSPOPBcKaQhKURlA7ER5FmOvzebDHniEkhHbGpbYsl84h61kc9fO5OmvUzujnMSPlWGbPGVINSy0+7RovYwGVTyOnzV7kVWsvLXJQHjoWCGvSVKeH2u3ndDGzUOVAcr8L2Bt8oOewgeJo2A1e6Mmq6tIcy5kcNXCRr6FL1QCo1b1qlGmvjhmeVsvQxoPTe9lU1JRZfzbhSJRgJKrNYzyjYY3mmEHmvqpEObi5zWL5/rhOFQjEDm62+LyllLHqn+k8qgc3W6VplMmxG1TSsxkVmvb67MeCYU0bx+4RN+rz1rTvbAYS9eYVgP2+/ZFAmDyN/W03GzgSUFp68rK0HeB0wnWwTKB/LEhxjn/a+5k+L9WluezvtuZgGW1ou30OcWdII5K/sMheOn7MIOqel+mjLM9vuQxhPKSfFRNCUFWaa6tsYHgiREF2hubvqmJRR6sYC0Y0+VRo5tqiOTwRJl9nY1eV5NLSPxbv1zHNp4FQqyrNZThgfTzq8IQi1LQiUVU2S2NHDTJDai+C1XuqZrA0laNdPmM09TJtCp/2DEEtR7Asz0+O32tjf+o7bfEIsUWaagBEdz05OFPJxcyibzRISe50PQVQW5ZHc4+1kp/Jni79QKBV+T8W1A8w2Ylwq31GWjJVHc5gNQg4NK7IykINfaLKFKvBkKGJEAU6ct9OlYF63QXZ2oZnaa7f8kG+wxP6NGtsOqtD4yHN+wixLKhFeoGwcoaR1hqye3CzUabWbiA5VSDB6sHNRo6lenCz5aBfiooSwPIaGg9GyNGwQUHZ34Pj1rOBIwY2U7WNbKC6zrWctnQjpYMlhFgRm860K/b/E4UQX51xzmYJolFJ72iQ0jxtxbW0PM9yBkt9wFqOS2FOBsU5GZb7ZuJGoYYy9Ps8LCzKthw9GDEwXkExtqwu7niplJ7wsSEoIlHJaDCiuwnVqUpWszijAe2IkUIzh86hgOVeuaGJEPlZ2gqnpjSHUMT6kA/jcgR79dmKQaDHp83oVjCM1yMMp2lZXaNGDtaCIqW/waoSN3JcVOPFrjLTCoCoCtKOsQraJR5gz2A1KgsG1SianQ7Wsa6rekYClOo4WCvn5TEeiljq8+uLTV7VctrsZklGAhHNzLBCM5eekaClKZUjqrGkK/utVxoMxb5fywCzO6p9eCKsGwCsLomNqB83f91D4zFnSEdGV9m57tj3a9G0m8kZMgh8qtc9ZOF5T7ZC6K0h69c9YkDTbm/gaDCsK0PtDJ0ZCxrLZTtZ0Hh5vcZ+VLOBdmxGvf1t516GIlHGQxH9521DbxoFZdINMxmsXwFfAkIAUsodKOd9HBMYGA8RiUrK8jI1f7+0QulHsdI70hWra63I16ZpJ6KlnqOh5wjaOSthUsHq82l1cas0i3UMgeqyHFr6xi1lcVSFrKdsqkuVaY8DFrI40aikz8Cxtnu6/fBE2FAp2qHZMxIwfO5gJ/JokGmzGd3qGQ5SmuvXLGFSRyBbdYZ6R4N4hBKtTobf52FBUbblLE5PrOxJb89X2Zio1RujqZdhULKsdvk0oGmZT32jGpSyHqvR1yOIY1pXdQ8HKNVZs8sr8wGo7xw2Ta/PQKcsik0Fs7pfe0YCuvuq1sZUMDUzry/7rUe4h8aVElmtiZ8LirLweYTlTPvQeMgwCg/WsoGqM2YcVLTG4+B4CK9HaAaWyvMyyfF7Ld/LQcPrjukRC9fdnUI2V8cqYKwEU7uH9WVzVoaXeQXWe8W6hwOU68hlOyXhqXRSdalS/WLFDo3T1LBD7WYDjfa3nWzgpNOvv3cOD1rTRwMpZEY6YcbBypFSvpL0nvXZ3HMU6rQ0VRgkY1l5HqGItGQUdw4pC7uyIEvz93bOwuqMHVBbma9N087ZGJN86m3qHNotGluprr26JJdgxNqBu2rfzrxCbZqT58CYv/6+sSDhqNTn04aQDEeidA5NMK9QX0iC9WhZ11BA11lfVJyDENZptg+O697PwuwMinIyrPM5PEGFzlpSRyBbjZh1DSkC3atRygiTwzOs0vR6hG42wNle0ltPObT0jVkq4eqK0aww2PNWSzLickSHz6rSbABabZ7/N8M4ZnVVNCo50DsaN96SsbxCmbhVZ8HBUteClsHk93mU4QwW9lYkKukdCejKADtTKtsHlYzcgiKdPVCWy+EBa6PaDw/oyz6fV+nptSKnwjF9Nl+Hptqsb+W61V6o+YXZmr+3o5vbByeYV5ClGQCzk2WXUtIxOMG8Am0eq0qs6zvVGSrX0Xc1pTmMBMKWDm7uHg5QkuvXnEQJ9oLT3cMBynXksp1sYFeK664uUapf2gfN201dwwGyM7z61UQ2AonKdesEJkusO9SqbTe/SHsNqXvHylC49sFxvB6hy2c6YcbB6hFCLAUkgBDiBqB9RrmaRdjbriikFbEIYDKWxRSXlTJBtUl8YbGe4Mnh8KC1iT0tfWPk+r2a9dOgnEo+OG4tHX+obwwhDIytkhykxFJJm7oRFuhsGHUTtlrYMOphzwv1aJZa34SHzPJpoeSmY2iCcFSysEjbWZ9fkEWGV1g6vHosGKZ7JKDLpxqBa+kzz6eUkpa+Md37Ccr1t1gcK36ob0zXIABl4qPVUeWH+sZ0hS/E+LToYB3qG2NeQZZm/5nCZzaHB8ctRQsP9Y3h93ko0ci0qXwGwlFLQwMm16j2/lxcojpD5u9pnKZusCJ3yudmGY5ZXXWgd5SJUJTllXmav8/PymBBYRYNFhys/V2jlOX5dXtorBpgrf1jRKUygEULqky1IqvUta0nVxYXZxOV0GHB8GzpH4sfwaIFq5Ub7YMTRKKSxcXaNCdLp8wb8WqAQ93j03lUdLOVQEhL35juswHr0+/6RoOMBSP6z9tG363q2OrZTotL7On61LrOPL3hiRC9o0EW6sjlohw/+Vk+S89G3We6No6N6z7YO8bC4mxNhxqUe2mF3kQoQsfghC6PWRleKvIzLd3L1hS2Xfx5W6I5zryCLN2gbDphxsH6KPALYJUQog34FPDhmWRqNuHZhm7mFWTpComlMQdrv4Vzll5vGaCmNEc3RTmvMAspJ1O4ZrCzbZA1Cwp0N4sa5e6xMP1od9sgS8vzdKcfqTS7LdDc1TZIUU6GrgGnRhWsGJo7WwfxekTc2U0Hn7vbBgE4bkGB5u+LsjPweYQlPne0KjRXzdd21j0eQVlepiU+97YPIyUct6BQ9zPl+ZmWDfehiTCr5mtfOyglfVb4HA2EaeoZ1b2fABUF1mhGo5LdhwcNaZbnZ9E7GrTkDO06rOwlXZoFyv7ssxAl3dU2yOr5BbpOW0WBjb10eIiFRdma5ZG2abYNkZXhiU9gm0ZT3Z8Wp6gdIRyzuuq5xh4Azl5SqvuZ5ZX51HeaDwS+3jLAagMZYDU7vKttCIA187VlVW6mj1y/15Le2x7TpVr9zGB9D0yEItR3DrNSJ6AKilNjxTjeGdMlK+Zp08zxKwOjrEzo29k2SEV+pq7zqzpzZoNg4UiUPe1DrNThEdTrHjddfhfXdzo07QzK2nN4kIIsn679YFXXSynZfXiI1To6GRS91DMSNF1dsOdwbJ0b6TqLOnlX26CxXC6wZjdJKdlzeNBwf1fkZzI0ETad/a3vHCYclcbXHbuXZrG9dZAMr5FtZ10f7Wg11u/phJmDhpuklJcC5cAqKeUbpJQHZpyzWYDu4QCb67q5bE2lruNSkJVBRX6m6QzWWDDMcw09nLusTPcz5XnWFk3PSIDtrYOcUVuiT9PiQhwPRnixqZfTa/RpluUrhp3ZTR2NSjbXdbO2ukT3flrlMxyJ8viudk5YWKirZO04Qxv3dbGwKFu3rMOOM/TYznZy/F6OT+UMWaC5aV8XHgGnVhXp07TMZwcAZ6VYT1YMoWfqu5ESzjBYT+V5mfSNBkz33712qJ+hibAxzfxMxRkyWSZ3oGeUpu7RlHyC+XU/OBbitUP9nFFTrPuZMos0Q5EozzZ0c7oBTat8SinZVNfFqVXFmv0nMLk/rR5afiRwrOoqKSX/2trK0vLceJ+DFpZVKJMEzRjI+7tHqOsc5vzl5bqfqSrJpW/U/FCKp/Z1UpDlMzTiy/MzTY9A7x0J8FxjD2cZOJVWdemmfV2EIpIzlxjovbxM+sdChEwGbdbt7kgp9xVdYm5PjQXDPFPfzZlLSlPq0V6T+/S5xh7GghHOrNW/l2V5mQTC0fg02FR4YlcHfp+Hkw10k5U+0WhUsmmfues2K/O2tw7SNxo0vO7yvEwiUUm/SR2ysa4Ln0dwapWBbLag56WUbK7r4vSaEt2sS3meNceyrnOYw4MTnGnCZjQr6zfu60IIWJtCJ5nlMRSz7U5ZXKwb5C+zuL93tg7S3DNqeN3phJkpgjcJIW4CPgh8IPb/9wshTp5x7o4yfv1cE6FIlPeeW2P4uWUVeTSaHNV+77PNjIci/Ndpi3Q/oy5ss4rmLy8fIhKVXHfSwpQ0zQqe+7e1MhaMcN1JC/RpWlzcT+3romNogutO1qepOkNmjff7t7Wxv3uUD12wRPczqjNkNnt3sHeUZxt6uOak+bqCHKw5GbsPD/LIjnbee26N5kGOcZp55mlOhCL8Y2sL5y4r021ut8rn4HiIe57ez4Ury+ON8Xp89o6Yd4b+8NJByvMzUwYBohYyQ3946SBZGR4uXVNpwGcsCGDy2f/p5YN4BFx14nxDPq3Q/NuWQ4QikmsN9pLVSNyjO9oZGAsZ0rSqfF7Y30tzz6jhns/K8JKf6ZuVGaxjVVe90tzH9tZB3ntureHnaspyGQ9F4v2ARrjtiX3k+L1cf4r+WlBLU82U3/WMBHh8ZwdvPH6esfzLz6Tb5OGmv3ymiYlQhP93nr7st6L3olHJXRsaqC3LNXQs1X1lRk41dg3z0PbDvPOsasPrLrMg9+974SD9YyHec05NSh7N0JRScueGBhYWZXPpmorUNE3s/UO9Y/zrtVbefkaV7oRbUHprOk32W2/Y20nH0ATXGMjmUovy/o8vHSTT5+HS1QY6RM2KmbiX48EI/9raxnnLy3QrC1SaZnl8vrGXA71jhtddkO3D7/WYtu/+9NIhMryCK46bZ8Cjef0RDEf5x5ZWzqgp0e0JVmmave4HXmvjYO8YN56vv7+zMrwUZJnXR3duqKcoJ4O3nr7Y1OedwkyJ4FrgQ8DC2OuDwBuBXwkhPj+DvB1V9I8G+eOLB7n6xAUsKddOT6pYWp5HU/dIysjg4YFx7t7cyFUnzDOMbsTTvSYWTe9IgF8808TlayqNI4MWjK2JUIQfP9XAadXFnGUQySvO8eM16QxFopLb19VRW5bLlcfrb2ormaFAOMKPNjRw0qJCQ0EB1srk7lhfj88reH8Kg8WKsPjBujoKszO48fylhp+zkhX7/YsH6BwK8NGLlqXk06wz9Mtn9jM4HuJzV6w05tOCM/RcQw8v7O/lwxcs1c2MqHyCuTW6q22QB18/zHvPrTU8z8IKzfbBce578SBvPmWRYU2+FWdocDzE3Zv2c/6Kck5cVKT7OSvOUDAc5Y719ayZX8BFK/UNomy/eWcoGpV87/F9LCzK5k2n6AdqwHrJ6RHEMamrfvVsM8U5GfzXqfpBO4AlsexWU49xMPDlpl7W7e7kwxcsNTSW5sXK78wMJPr55v0EwhE+dIGx/DMrU7uHA9z34gGuP3mhbvkQKJPhvB5hiuZju9qp6xzmk5csN5RTVpyXOzc0kJ3h5YMGRqJC00/vaGp6wxMhfvGMEgA7rVrfhsjxe8nK8MSnlxph474utrcM8PGLl5Hp084UwKTzYua6f7yxAa9H8JELjZ93ZX6WKQcrGpXcsb6eJWW5XH2CvqOR4fVQkus39bwP9IzywLY23nFmNYU5+hPlrOiQP718kJ6RQOp1blLPSyn50VP1zCvIMpTLQgjTe+fwwDh/e7WF/1672HDQg5Ws2D+2ttA2MM5HTNgiPSOBlOWWoUiUH29s4MRFhVyyWl/HqTTN6KPXWwbYuK+LD5y3RPeonHTDjIO1CDhVSvkZKeVngNOACuB84D0zyNtRxW9fOMBoMMJHLzLeKDA5BjzVORa3Pr4PKeHLV602/FxprprBSi14frKxkbFgmM+/cZXh5wqzM8jwmlM0v3m+mc6hAF944yrDDI7iDJkTZg9sa6Ouc5jPXL5Cd1qPCrOC4k8vHaJtYJzPXWHMJ2Caz11tgzy0XTHcK3SGe8T5NCkkX27qZXNdNx++cKluzXycZn4mvaPBlM7Q4FiIn21WDHejEhmVphlnqGt4gt88d4BrT1pg2NMF5h32aFTy/ScUw/0dZ1Wl5BPMRQq//8Q+inIyUiqySWMotSN45/p6pJR86tLlpmia4fPnm/czNBHiiyn2Z7bfS16mz5Tx8pdXDnGob4zPXbFSt6dLhVnl8+jOdna2DXLTZSt0yzFUWC2NPYI45nRVY9cwG/Z28q6za3QP8FWh9m80G0w+jUYltzy6l/mFWYaZIZic2poqg9U+OM4fXzrIW05dlDJYaVam3vP0fkIRyScuMd6r6jTQrhRZu0gse7W8Is8wKwyTxyKkkin7OoZ4NFa1YFRhoNDMpMdEieBvnz/AwFiImy5bYfg5IWJVGyl4lFJxXKpKcgyralQeIfV1N3WPcP9rrbzrrOqUOrSyIJPRYCR+NpEeHt5xmH0dw3zqshWGzi+YX0N3bajH5xGG1S9g3sEaCYS55+n9nL2klDNN6OTRYCR+FpUenq7v5tUD/XzkoqWGzi8oQU8zeu4nGxuQyJTOr9nrnghF+OnGRk6pKuL85fqtL6A8m7CJcst/bm2ltX+cT1+6IqVtZ9ZevHN9PSW5ft5tkPlNN8w4WBVAIvchoFJKOZ70vmkIIb4phGgTQrwee12V8LsvCSEahRB1Qogr7NB3iqGJEL99vpnL11Syal7qZjh1kolRw+8rzX08vP0wH7pgKYt0pgmp8PuUKEyqEsH93SP88aWDvPX0KsMoHkxmhlLR7B4O8LNN+7l0dYVhOZcKMzRHA2F+sG4fJy8u4qrj9aNPKszU4Y8Ewty9qZFzl5XyhhSbWqWZahNKKbn5kT0U5/hTGu4qzZ4UmSEpJbetq6OyIJN3n11jiqaZeu8fPdXA0HiIL11pbLjDpGJM5bD/dGMjoUiUz6RQ3iqfkNrJuH9bGzvbBvnsFStSKwiVzxQRzc11XTzb0MPHLlpmymGF1EpiV9sg/9jayrvPrjGcIAaTzlAqo621f4zfPN/Mm09eaKqp1swaHRwLceeGes5eUsqFK/XLmFSU5WfSnYLPiVCE29btY9W8/JTZK5VPK8NyjiCOOV11z9NNZGV4DMvFVMwryCLT56HZYCDTg9uV/fq5K1amdNjU6bKpMhA/2tCAlPDJFM4QKGtraCJsOF68a2iCP750kDefslC36T+ZZio59dD2Nhq7RvjUpStSThdT5VSq7NCd6+vJz/TxgRSOKij7dDxkbHAPjoX41bNNXLam0jAbnshnqoDNut0d7D48xCcvWW4q8AmpM1g/eqqBTJ+XD6Uw4MHcGgpFoty5vp5V8/K5xiB7lchnKvthV9sg/379MO97g4lAqsmWjV8+00TPSJAvmNDJZvRSJFZVUFWSw9tONw5OguK8pNKdjV3D/O3VFt5xZnVKO1TNWKayG377/AHaBydSBuRhstzS6F4GworDdvLiIlM6rjw/K+Wz2Xqwj6fru7nx/CWGFS/phhkH60/Ay0KIbwghvgE8D/xZCJEL7HHw3XdKKU+OvR4DEEKsQTkY8jiU0o6fCSGMpfwM4PcvHGB4IszHL06tECBhvr+OgxWORPnGQ7tZUJhlynAHpQwplQF362N7ycrwpoxmqTBjwN2xvo6JUCRlli2Rz1Q0f/H0fjqHAnztmjUpI+5gLgJ177PN9I4G+dwVqYUZmMsMrdvdycvNfXz6shUpDXeVZqrM0FN7u9h6sJ9PXLI8pcGi0gRjwdvUPcLvXzzAW0+vMpwCpMJMSduh3jH+/PIh3nr6YsNGeSt8qo71SYuLuN6gP3AaTQMFHo5E+e5je6kpzeH/TDisOX5lMpkRn6pjXZSdwcdNGIGg3NNUhsZtT9ThEfDZFOWWKsys+x9vbGBwPMTXrlmTUpmZ5fO+Fw7Q0jfOV69eY2p0rdVBLEcQx5SuOjwwzoOvt/G206t0D4ZOhMcjlDMWdUZtT4Qi/OCJOk5YWMibTk69X7MyvBTlZBievdPYNczft7TwjrOqUgYuwNwUuJ9t3k84Kvn4xcblSJM0Mw2NxHAkyo82NLBqXr5h+boKM6Vyu9oGWbe7k/efV2vYixOnGXt+RkMpfv1cE8MTYdP6vizPb5jRiEYld65vYEl5rqnAirrGjK67oVPpOXv3OTW6B84mQm2HMHKw/r6lhQO95jL2YM4m+f4T+yjOyeDDJpzAvEwfOSl0SNfQBL9+tomrT5jPyYuLUtI0o+v+va2NfR3DfPaKlYb9e4k0U8n67z1eR67fZ2rvmCm37B8N8rPNjVy8qiJlJQ2Ya3/5+5ZW2gbGuemy1NkrMPe871zfQGmun/87uzolvXTCzBTBm1Fq2Qdirw9JKb8tpRyVUr4jzfxcD/xVShmQUjYDjcAZaf4OQ4wGwtz7XDMXrSznhEXGZVIqUmWw/vjSQfa2D/H1a9eYMrJBjcLoC53nG3vYsLeLj1y01PSBaRUpIjt7Dg/x11dbePc5NSlLORL5NFrchwfG+eWzTVx70gLDmvFkmkbOUN9okF8928QVx1WaEmagKO5IVOo6Q4FwhO8+tpcVlXn8r8kGyFRORiQq+cG6OmpKc/ifteZoVpiIln3XhmNtxCcojrXPK1KW3CTTNFqjqmP99WtWm1KMOX4feSl6hv62pYX6zhG+eOUqU0oHlFHNRnyqjvVNJh1rUCLORs/otUP9PLT9MB84b4nuGWXJKE8xpr6pe4T7XjjAW9cuNj1mNlU0t3ckwE83KgrSTCZYpTkcCDNucprYkcKxpqt++3wzUQnvf4Nxr2giastyadIpEbz3uWYOD07wlavN7VdQsmJGxvEP1tWR4/fxsRS9GSrKC4zlX8fgBH9+5RA3nLoofjBxSpopgpX3v9bGgd4xbrpshanrzsv0kenzpJCn9RRmZ/A+k8+mLG5wa9/L/tEgv3mumatPmG8qqAapdfMjO5WeMzNZO1AM7uKcDEMj/q4NDeRkeA0HEyRiXooM1nhwsh/84lXGvTgq1IylXk/8M/XdSgXExct1j8rRpGlwL+96qoFgOJqyd1lFqqDnRCjCD59Ugh1msnYqTaMjSV490MeGvZ186MKlKUtWE2ka6Y+7NzUyGgjzhRQl8CrK84z390Qows82NXJadTHnWdBHYwZlpq809/FcYw8fvnCp4cCVmYApC0VK+SrwF+ABoEsIkTpfmRofE0LsEEL8RgihWt4LgZaEz7TG3psGIcSNQogtQogt3d3daWBHwf2vtdI/FuJjJqNjoAjc0ly/5gGJXcMT/PDJes5fUZ5yEEMiKguydJVCJKpE3BcVZ/O+FIMYEmE0oUlKyS2PKlH8T5jM3IHiuBiVyd32hNJ39oU3mhM8oEQ5jMrkfr5Z6Tv77OUWaKYQaPe9cIBDfWN89eo1KWu8p9HUUTgPbVf6zm66fGXK8gsVccdFR+GojvXHLl5m2rFOFS3b2z7Eg9sP855zanUPlU5GKmdoqmNtfiSqkUAfnghxx5P1nFFTYmkvlRuUsQbDUW59fC/LK/L43zPMi7UKgzI5KSW3PLKH8vxM0xnrVHwCfPexfWRlePmMhXVfnp/JSCDMWFBb+dy1oYGxUIQvX2VOQao0Qd+5/uUz+7nn6f2mz8tJJ44VXaVMEG3liuMqTWWGVNSUKYfkJhthnUMT/GxTI5etqTQViVYxrzBLd8jFa4f6Wbe7kxvPX2LaoJvs7dSmefemRqJRaUk/V8TOwtPSUYFwhB89pTTTX2YwjTQRQghFP+vs1a0H+9m4r4sbz19i2oCvVEundHT+Pc/sZywUSdkfmgjlugOaBnc4EuWuDfWsqMwzbcCrNPV43H14kEd3tvPec2tNZVRh8pwyvcmW98UGOZkpP1NRnp9JMBxlaHy6zFOH+SwqzuadKXqCp/BpEPDe3z0SK7urMlX9ofII+nr+vhcOcHhwgi9ducp0sEM9kkQrayml5NbH9lJZkGnZZtRb5y19Y/z+xYPccNoiwwFriUiVwfrrK4doH5ww1XsVp2lg2yk9hnWU5WXyjjOPbPYKzI1pv04I0QA0A0/H/n3cxN9tEELs0nhdD/wcWAqcDLQDP7TKuJTyl1LKtVLKteXlqes0TdLkvhcPcuKiQsMpf1pYpHPq9fce20cgHOVb1x1nesHA5EF0WtNW/rW1lX0dw3zxylUpG9ITYXTo6tP13bywv5dPXrLccKLOdJr6ZXJqnfP731Cbst53Cs14L870DdM2oEx6e8upiwzHiGvxCdpG4eBYiJ9ubOSCFeWcv8L8WjISkoFwhB8+Wc9xCwosKzDQdoYSJ72Z6blQoTpDeorxB+vqyM/08WELzoDCq77wvWtDPdGoNccaYj1DOjTveXo/vaNBvnrNakt7qbxA3xn6yyuHONg7xpevXm3asQZjxfP4rg5eOzTAZy9foXs2mxYqCvSdITX6+OELzWeswbjkan/3CH9+5RDvOLOKZRXm95KRQuseDnDXhgZ2tQ1aekbpwLGkqx7fpYzpt2o01JblEo5KWpMOoL31sb2EIpKvXm2uNFzFvIIsOga1DZvvPb6PsrxMSxm2CoMMVkvfGH999RD/c/piS06lGrDT0lF/f1WZfvaZy1daWq+VBZm6WZc71tdRmuu3JKMrDUrluoYmuO+FA7z55IWWdF5Fgb7B/cC2Npq6R7npMnNld4k0O3Xk3p3r6ynI8vEBk9krUILTeZk+zeseHA/x883KxEQz/eAqJgOK02k+srOdPe1DfPbylSl7gpNp6umlO56sJ8vnMV1eDlASm8CspeeHJpQBVhesKOccg/NSk2Eklzfs7eK1QwN8+tIVpquowLjf9kdPNSAEfNpkJQ0k2CIadth4MMJPN+3nzNoSzl1mPshTEQ9OTKf5wv5eXmrq46MXLbV03emCGYviZuAsoF5KWQtcCryU6o+klJdKKY/XeD0opeyUUkaklFHgV0yWVrQBibVUi2LvHRG8uL+Xxq4R/u/sGsvGQVXJ9FPtX27q5f5tbdx4/hJTzbiJqCxQStp6k5TCeDDCHevrOXlxkeG4Ui2oEY5kmtGo5LYn6qgqyeHtFhV2hYHj8oN1dcqkNxN1zlNoGpxKftf6epDWNrXCp76h+Ytn9jNsIc2twigz9JeXD9HaP87n32g+AgWTo7W1nKHHd3Wws22Qz1yeetJbMvROjn+luY+N+7r48IXLLDnWoK90GruG+efWVt51dupGWk0+NWh2DU1OODTT4D2FT53M0GggzE82NnDWkhIutOBYg35mKByJcvu6OpZX5HHDadbO2tCbzCil5PuP76Mi31r0UeVTiybA7evqyPJ5TJeFqqgwaFT+6cYGAuGopSxbGnHM6Ko/vXSImtIczraQbYLJUe3NCX1YrzT38e/XD3Pj+UtMl92pqCxQsiTJh+5uruvmleY+PnHJMktBhtLcTDxCO7j2k40NCCFM916pKNcZ8jMRivCTjY2cXlOccvpZMip0Kkxe2N/D8429fPjCpZauuzjHT4ZXaDovd29qJBSRfNJC9goms2LJzkswHOVHTzVwwsJCrjjOXNYuTrMgS9OQ3Xaonw17u/jgBakn5SajokC7hNPskSHT6OlkA8ORKHetr2dlZb7hWX96NLXknZq1e/8bak31nKlQJzBrXfe9zzYzOB6yVKED+kHkaFTywyeVVoUbUkyKTEZF7Lyu5GqExq7JSZHzC82VwCfyqXUvf//iAXpGAnz2CmvBDr0hJFJKbn+yjgWFWbz9zHQUMliHGQcrJKXsBTxCCI+UchPKeSO2IYRI9AzeDOyK/fwQ8DYhRKYQohZYDrzi5Lus4L4XD1Cck2F4oJseaktzaBsYjxtcgXCErz24i4VF2SnPKdKCnuPyuxcO0DE0wRevNJ8yT6aZbGw9vOMwe9qH+MzlK0z3tajQM+Be3N/L0/XdfOTCpabLJOI087QjEg2dw/zrNcVwNzqnyIjP5E3YOTTBb55v5vqTFpjua1GhlxkaCYT5ycZGzl5Sallxq7wm389QJMrtT9axsjKf6000oCdDa5qclMoI9cqCTEvRViM+AW5fV0+O35dyDKwVmj+xMOEwGXqZoXufa6ZnJMjnLZSfxGnGlHjyaOV/bm2lqWeUz12x0lRfw1Q+tR2Xjfu62GJhUEoi9Jy27S0DPL6rg/933hJLhoHCp3bm9lDvGH9+RRmUYjWglCYcE7qqvnOYLQf7efuZVZaCN0C8hEmdJBgMR/n6g7tYUJjFR0wcSZKMeYVZSDl1zUZiRzNUl5qbfpYIb3za7dS11dQ9wr9ea+OdZ1o36PSyYn948SBdwwE+azF7BdrnN0kp+eGTyplF7zzLWqDS4xFUaNBs7Vf21P+sNd9zFudRp7/pb1taaO0f5zOXmy/DmqSpGMfJlTU/fFIZgW1Hj2jdSytHhiRDL0D7wLY2mnpGuelyc712iSjPz2RYY7qlmrV7v4lJkdP41HDa+keD3PtcM288bp7pGQBxegXaQeTHdrWzr2OYT5sYcZ+M8vxMgpEoA2NTjyC6a0M9WRleU0NCtGgm2yLDEyF+/rSStTu9xny2EvT71jfVdbHt0AAfv2S5pWxlOmHmbg8IIfKAZ4A/CSF+BOjPeTWH24QQO4UQO4CLgE8DSCl3A39Hmfj0BPBRKeUR6aTuGQmwYW8X/712seXsAMBpNSVEopKtB/sBZTRtfecIt7zpeFupybixlbAQB8asTWxJhlaEIxiO8sMnlRGo155oLaoD2tFs1XCfV5BlatKbHp/JAlJtmLbjsOoduvrjpxoIRyQ3XWYv4q41AlidcPj5N1pX3HGaSXz+Y0srzTYNdz0+1QmHn7zEWtmAigqN0+hfbxngid0dfOA8830XyXwmO0MHekb5yyuHeNsZ5iYcavEJUxVP32iQX8YO6LZaDqzyCVP30kQowl0bGji1qsh0P8dUPqc7Q5FYdrm6NMfW6fN6xuVt6/ZRkuvn/51nLSMG+uUtd26oxyOEqXHcM4RjQlc9sK0Nr+f/t3fn8VWVZwLHf08SkmAWQoCQsId9EWWJoKXuS0URWrUdtJZOO52ObZ3qtP1Yp1Zrnaq1deqoY+tU64ijuLR1wwUERcQFlR2ykBCSQHYSIAkhZH3nj3NuuFxzQ+659+beg8/388mHm5PLOc997znnOe953/O+wtUnmVi4J0OS4klJjKOwpgmwWoUKqpv41eIZjh4A755s2GskQc/oZz+9rG+jn/nq6fz3X2uLiI+NcVQJ7On4P9LawZ/WF3PupKEnnbOoJz3N3/Re4QE2lx3iposmOrqG6Kkl55F39iBIn0c09o0ROKFVzJqzqIizxg3m/ABb7a11fr5nzcfF9Xywp44fBthq59HTc3yPvruHts6uPg/k5O141/3jn9u71e4yB+fmnm5UBdNq54nTdz//n/f30tzWEXAPHTg+P5v3ub6j05qUfvLwZBY5ur77/LVYflUjr++o4rsLsh3l+J560zz5gTW/208vC/xzp532+Tleu7oMD6wuZKyDVrtQ6svZbwlwFCuxrAKKgUXBbNQY8y1jzExjzBnGmMXGmCqvv91jjJlgjJlijDlp//lQWbm9ks4uwzUOkhZAztjBxMfGsGpXNWvyanhsfTHfyBnFhX0c+caXp4XGu9vhH98r5khrB7cG+FyLh+eOlvewui9s2s++g0f5eYBd2Tw8F3DeCfbtvBq27T/MLZdMcpRoBsbHkpIYR9Xh4+vcXHaIt/OsB6b7+gCtr2GpCSfEWVLXzPOf7ef6+WMYMySwrmweGSknrrP+SCt/fr+Yy2dkMtvBhTtYleuqxuPPSLS0dfLQO4XkjB180lnN/Rmekkh1w7HuO4+dXYbfrS4ge2gSX89xts97Woaajll3tzxd2YYkxfNPDi7cPXHCifvoH9YUMiA2JqDBV06I004S3uv84zproJRAu590x5n6+XUut1uXA3kg+2RxegZK+WkAA6V4Sz8tnrgYOWGdHxRZ3ZhuunCioxntY2KEYckJJ6wzv6qRV7ZV8J0FfR8oJQxO+VxljGHl9koWTBwacMsjWAM0nDdpGKtyq3liw17+e90erpkzKqBBY7z5tpIca7e6sAcy+pmvzNTEE/atgupGVu6o5DsL+jb0ty/PBbf3efp/PyjhYHOb466snkmWqw5b5+muLsMf3i5kdPrAPo8Y+7l1piZS2XD8vF9S18zftpRz/fwxfR6J1NuQ5ATr2D98fJ3PbCyjprE14GfOPDyV1Up7nVarnTXPY6Ctdt3rtCuWnm5o+w96Wu2ctYSn2MOqe5dlMK12AMMHnfi5IbhWO7COncqGlu7PXdt0jKc+KmHxmSP6PGiEt4S4WNKT4k+I8dVtlfazdn0bKdKXZz+v8FrnH9YUkpLYt/ndepLhcy1y+GgbT2ywbnYG2v0frHNaRkoiVV7f96rcavKqGrnlkpPP7xZOfdnyncaYLmNMhzFmuTHmYeDn4Q6sv728tYLpWamOdmyApIQ4rpk7kmc/2cc/P72J00cO4q7FMxzHMzw1gbTTBpBf1QhYD6T/74clXDNnVJ8mP+5JVmoiSfGxFFZbdy8bWtp5aG0h87LT+zShW08SB8QyavBAimqPAFbXyPvfKmD8sKSg7hxMykjuvsva1WW45408hibHB/TAtK+Jw5IprG3q/v23b+UTHxvj6O5gd5zDkymsbuo+ST64tpCW9s4+z33kL87yQy3dk04+vmEvNY2tjrqyecfZ0t7Z/XD7i/Zw5z9zeOHuiROgsMb67t8tqOXjvfXcdNFEx5P5eSbMLrK/+237D/Paduvi6mQTQvZ1naV1zTztYKAUb+OGJBEbI93rrD/SyqPrrIFSnNwRB2uemcGnDeheZ0tbJw+sDnygFG8xMcKEYcnd6+zsMtz7Zj4j0wbyzQBG0fI1MSOZIvt7N8Zap5OBUkLslM9VW/YdpvxQS8DPkHj7l/PHc7S1k9+8kc+8cen85qunO15Xls+F5/KPSqk43MJtAYx+5mvS8BSKDxyhraMLYwz3vGHtW30d+ttX4oBYRqcPZLd9DNQ2HeOx9cVcOr3v03z48pxTPOv0TNB8y8WBd7P3XmdpXXN3N7T73swnIc5Zqx1Y3S3HD0tit53vDzW38ci7ezh30lBHPWDAyiNw/HOvzq1mU9kh/vUiZzdTwbqp5t0N7cG1hUgQLeEicsL1Q9Oxdh5aW0TOWGetdgCTh3tynbXO93bXBtVq51nn4aPt3S0vD64ppKPTcMslgbfieK9zt1f+8Az17vQGyiR7P/dcM36yt541eTV8/9zxAT+z7R1jS3sn+w9ZjQcPvVNEc1sHP3HQetUd5/Dk7v28taOT+1cVMCkjmcV9mH8znPpyJri0h2ULQx1IJO2pPcKO8gaunhPcl3HHoul8/7zx/PCCCTz7vflBjbkvIkzPSmVHeQNdXYY7XtlF4oDYgAdi8BYTI0zJTCG/ytoRH1xTyMHmNu7s46Sl/kzNTO2uCP7lgxL21jVz56K+D3fe4zqzrHUaY/j7lnK27DvMrZdPdXwyA5iWlUppXTMtbZ2sLzzA6tyagIY77zHOzFSaWjsoP9TCrooGnv1kH8vOGdedgB2tMysFY6wktv/gUR5dt4crZ2YFNJLS5+O0KhJ5VY0cPtrG71YVMC87nStmOjvxeuIEq/XiWHsnv16Zx8SMZMd3MgEmD09BBPKqmujsMtz56i4yUhIc9fX2yBqUyKCBA8irsirCv16Zy4BYcdx6BdZFW/bQJPLs/f7+VQUcbesMeBQ2byLCtKzjx9Kj6/ZQcbiFX101w/HFKljfk2edz2wsI6+qkV9cMS2ofulTM1MorGmio7OLVbuq2VBUZ80j5jDphsgpn6tWbq8kPi4m4MEJvJ0xKo03fvxlnliWw7Pfmx/U6Fpppw1gZNpAPis9SFl9Mw+uLeSSaRksCGD0M1/TslJo7zQU1TaxOreGDUV1/Nulk/s0Ya8/07NSya+0j9W3dtPW2cUvrnB+rE7MSCYuRsitbKTpWDu/fauAM0cN4mt9mLDXn2lZqXQZ2F3dxIaiA7ydV8OPLpzY3WrkdJ15dh79zzW7OdLawS+vnO54feOGJDFwQCx5lY20tFmV9KmZKSx10H3ZY6zde6SguolPSw7y0pYKvrsgu7v1xAnrmsQ63z/8ThH1za19npy9J5mpVg7JrWyktaOTu1/PI3toEt8KYuJaz43y3KpGdpY3dM9BGszzq1MzU9ldbZ2X//TeHiobjgX1udNOiyczNZG8qkY6Oru4a2UeI9MGBjRSpC/PPG55lY0U1jTx9MdlLJ03xnHDAVifu/jAEVo7OnliQwll9Ue5Y9F0R612oeT3alVEfgD8EBhv9z/3SAE+DHdg/enlreXECEHdFQRr0INgTtq+zp88jPveKuDGZzbzUXE9935tZlCVAYCzxqXzlw9KeHHTfpZ/XMq3zh7L6SMDe5jSV864wazNr+G17ZX819oivjJjOBdMcdaVzWPOmMGs+GQfL22p4O7X85gzJo1rHXbf9Jg7djBdBv62eT+Pritm/NAkR8+g+K4T4LXtlbyytYIhSQmO+k97mz0mDRFYtauaLWWHiI0Rbg/iwh2sk9pp8bG8k1/DS1vKaTrWEfDUAb5Gpg0kMzWRdwtqya1sYN/Bo6z43vygmuQHxsdy+ohBrCuoBWPYUd7AQ0tnOerK5iEi5IwdzPrdtTz9cRnrdh/gl1dOC7orW87YwazcXslLW8p5cVM5/3LeeMctYh5zxw7m0XV7eH1HJY+tL+bq2SODqlh74nx1WyWvbqvg/lUFnDtpaFAVa7CO+Sc+KOFvm8v5/erdTMtKDapiHYwvSq7q6Ozi9R1VXDQlI6jjAaxWomD3VbCOrQunDuOFz/azq6KRAbEx/EcQLWIA87OHIAJ/XFfMx3vrmZqZEvS+NS97CKtza7jnjTz+vqWcH104IagL2YS4WGaPSePNnVXsPXCEA02tPHbD3KBuhOSMG0yMWDcpPy05SPbQpKB6bADMy07n1W2V3PtmPs9s3Md3Foxz3EsHrFaxnHGDWZ1bTX1zGxWHW3jun88O6mbqvOx04mKE/9tYyq6KRkamDeTHFwf+nLW3+ePTeWHTfu55I5+/fFjC0rNGc6bD1kqw9vOzx6ezNr+Gto4u9h5o5qnvnBXUTaozRw8icUAMz24sY29dM8OSEwIe0dXX/Ox0nvqolHvfLGD5x6V8ddaIoPPH/PHprCuo5Zev7CK/qpHHbpjruLUSrBt+KYlxrPh0HweaWhk0cICjwat8Y3xsfTH3vVnAik/2cfmMzICm3AmX3o6KFcBVWKMlXeX1M9cYc0M/xNZvFkwYyk8vm+K4C1K4XDt3FJmpibydV8O3zxnLdfOc3yXyXifArX/bwbTMVP59YfAVwsVnjiAhLoYfP7eVYckJ3Hf1GUGv8yszhlsH3l+3ExsjPLR0dlDJC+BLE4YwMm0gd7yaS0NLOw9fNzvo0WWmZqZwxqhB/H71bkrqmnlo6SxHD7x6y0hJ5KIpGfz5/b1sKjvEb685w1EffG+JA2JZMmsEf91cztt5Nfziimndd5KcEhG+kTOKdwtqee7T/fzgggkBzdvhzzdyRrGzooGH37WeDwn2xgfA13NGU9lwjF+9lssFU4YFPNx5z+scRXNbJz95cTtnjk4LumIN8LXZI4kR4aYVWxmdfhp3LXHezdhj4cwskuJjufn5bSQlxPHA188Meo6qC6ZkMDQ5gdte2klbRxePXDc7qIusIH0hclVHl+HG88ezLIi75uHwgwusVpbWjk4eX5YT8Ch/vjIHJbLw9Eze2Gk97vbf188J+jmKJbNGkJoYx+MbSpiXnc7NFwd/rC47Zxxl9UdZnVvDbQunOn7m1iMjJZGFp2fx2vZKayTa62YHdSELsGjmCNKT4nl8Qwlnjk4LqgeMx7JzxlHVcIyV2yu55eLJjrsbeqQkDmDJrJG8ubOa2qZjPHL97KB6/wBcNiOTjJQEnvighGmZqdyxyHmrnccNZ4+l7kgbL22t4MbzJwR9E/m0+DiunTuKtfm1VBxq4eHrZgd97XDh1AxGpg3kyQ9LGD80ibuDvNkB1uduau2wWtjOGcvlpwd3cy4hLpalZ41mQ1EdxQeO8OA/zHI0WIa3L08cSvbQJJ76qJQRaYncd/XMoNYXKuI7vn33H0R6rfYaYw6GJSIHcnJyzKZNmyIdRlg0tFh9dIPpcubroz117KpsYOm8MQEPoe7PJ3vr+ai4nuvnjwnZQ+47yxt4O6+aa+aMcjR6XE+KDxzhla0VXDEzK+gKhkfl4Rae+3QfF0wZxtyxwd0t8jjY3MbTH5cyZ8zgkN2JaW7t4KmPShk/NImFDp/p8dXW0cXyj0oZnBTPNXNGhmRy2a4uw7OflIEI188bE5JmfquraQWHj7Zxw9ljg75w8Vi1q4riA80sO2ds0K0KHhuKDrCl7DDfPHuMo4f6e7K57BDrd9fyD/PGBDzFgT8F1Y28saOKJbNGBDRRcV+JyGZjzEmHWddcFXmeB9aDvQnmcay9k/d21zJ7zOCQ5ZO9B46wq7KRy6YPD9nx/37hAeJihS9NCP7GEljPzazKrWLumHTHAy/5KqtvZtv+w1w2PTNkk61+uKeOLmM4d1JoctOx9k5W51Zzxqi0kE3xUH7oKJ+VHuTS6ZmOnwn2tXFvPcfaOzl/8rCQ5Lq2ji7e2lXFjBGpITuHVjW0sHFvPRdPGx6y67tNpQdpaGnnoqkZIfnc7Z1drM6tZmJGclBdA73VNh7jgz11XDQ1I6juxE74y1W9VbBKAM8ffUvUGGOcd8IMsVM1aSml1BdVABUszVVKKaUiwl+u8lutN8YE34dGKaWUCiPNVUoppaJNn9pNRWQxcJ7963vGmNfDF5JSSikVOM1VSimlosFJnxwVkd8CN2PNWJ8H3Cwi94Y7MKWUUqqvNFcppZSKFn1pwboCmGWM6QIQkeXAVuAX4QxMKaWUCoDmKqWUUlGhr2Ofpnm9Dm7SJKWUUio80rxea65SSikVEX1pwboP2Coi67BGaDoPuC2sUQVo8+bNdSJSFuRqhgJ1oYinH7glVrfECe6J1S1xgntidUuc4J5YQxFnoBM+aa6KLm6JE9wTq1viBPfE6pY4wT2xuiVOCGOu6m2Y9keBFcaYD0UkCzjL/tOnxpjqIIOJOiKyqS9DAkcDt8TqljjBPbG6JU5wT6xuiRPcE2t/xqm5Kjq5JU5wT6xuiRPcE6tb4gT3xOqWOCG8sfbWglUIPGAnrBeB54wxW8MRhFJKKeWQ5iqllFJRxe8zWMaYh4wx5wDnA/XAkyJSICK/EpHJ/RahUkop5YfmKqWUUtHmpINcGGPKjDH3G2NmA9cBXwXywx1YBPw50gEEwC2xuiVOcE+sbokT3BOrW+IE98Ta73Fqroo6bokT3BOrW+IE98TqljjBPbG6JU4IY6x+n8HqfoNIHLAQWApcDLyH1QXj1XAFpZRSSgVCc5VSSqlo0dsgF5di3QW8AvgUeB541RjT3H/hKaWUUv5prlJKKRVteqtgvQusAP5ujDnUr1EppZRSfaC5SimlVLTpbZCLi4wxT3wREpaIXC4iu0Vkj4hEzbwpIjJaRNaJSJ6I5IrIzfbyu0SkQkS22T9XRDpWABEpFZGddkyb7GXpIrJGRIrsfwdHOMYpXuW2TUQaReSWaClTEXlSRGpFZJfXsh7LUCwP2/vtDhGZE+E4f28PLrBDRF4WkTR7+TgRafEq28f6K85eYvX7fYvIv9tlultEvhLhOF/wirFURLbZyyNWpr2clyKyn35RclW05ilwV65yQ56yY4raXOWWPNVLrFGXq9ySp3qJVXOVL2PMF/oHiAWKgfFAPLAdmB7puOzYsoA59usUrOGIpwN3AT+LdHw9xFsKDPVZ9jvgNvv1bcD9kY7T57uvxpokLirKFGty1DnArpOVIVaXqLewJlU9G/gkwnFeBsTZr+/3inOc9/uipEx7/L7t42s7kABk2+eG2EjF6fP3/wTujHSZ9nJeirr99FT5ieY8dZJ9IirOqz6xuipPeX3/UZOr3JKneok16nKVW/KUv1h9/q65ypiTjyL4BTAP2GOM2WuMacPqv78kwjEBYIypMsZssV83YY2INTKyUQVsCbDcfr0ca2SvaHExUGyMKYt0IB7GmPeBgz6L/ZXhEuBpY9kIpIk1F1BE4jTGvG2M6bB/3QiM6o9YTsZPmfqzBHjeGNNqjCkB9mCdI8KutzhFRIBvAM/1Ryy96eW8FHX76SkkavMUnBK5KprzFERZrnJLngL35Cq35CnQXNVXWsGyCnu/1+/lRGFiEJFxwGzgE3vRTXYT5pPR0J3BZoC3RWSziHzfXjbcGFNlv64GhkcmtB4t5cSTQDSWKfgvw2jed7+LdSfII1tEtorIehE5N1JB+ejp+47WMj0XqDHGFHkti3iZ+pyX3LifuoVrytAFucpteQrckavcevxHe65yU54CzVXdtILlAiKSDPwduMUY0wj8CZgAzAKqsJpjo8GXjTFzsIZK/pGInOf9R2O1wfY+L0A/EZF4YDHwV3tRtJbpCaKpDP0RkduBDuBZe1EVMMZY8xP9BFghIqmRis/miu/by3WceIEV8TLt4bzUzQ37qQo9l+Qq1+QpcGeuirYy9McFuSrqv+seaK6yaQULKoDRXr+PspdFBREZgLVjPGuMeQnAGFNjjOk0xnQBj9OPTcO9McZU2P/WAi9jxVXjaWK1/62NXIQnWAhsMcbUQPSWqc1fGUbdvisi/wgsAr5pn7iwuzHU2683Y/UXnxyxIOn1+47GMo0DrgZe8CyLdJn2dF7CRfupC0V9GbolV7ksT4F7cpWrjn835Co35SnQXOVLK1jwGTBJRLLtO0VLgdciHBPQ3Zf1L0C+MeYPXsu9+4R+Ddjl+3/7m4gkiUiK5zXWQ6S7sMry2/bbvg1Ey6SfJ9xlicYy9eKvDF8Dltkj35wNNHg1e/c7EbkcuBVYbIw56rV8mIjE2q/HA5OAvZGJsjsmf9/3a8BSEUkQkWysWD/t7/h8XAIUGGPKPQsiWab+zku4ZD91qajNU+CeXOXCPAXuyVWuOf7dkqtclqdAc9WJTARG9oi2H6yRQwqxata3Rzoer7i+jNV0uQPYZv9cAfwfsNNe/hqQFQWxjsca1WY7kOspR2AI8A5QBKwF0qMg1iSgHhjktSwqyhQrkVYB7Vj9f//JXxlijXTzqL3f7gRyIhznHqz+y5599TH7vdfY+8Q2YAtwVRSUqd/vG7jdLtPdwMJIxmkvfwq40ee9ESvTXs5LUbefnko/RGmeOsk+ERXnVa84XZOn7LiiMlf5OadG5fHvJ9aoy1V+4oy6POUvVnv5U2iu6v7xO9GwUkoppZRSSqnAaBdBpZRSSimllAoRrWAppZRSSimlVIhoBUsppZRSSimlQkQrWEoppZRSSikVIlrBUkoppZRSSqkQ0QqWUgESkSEiss3+qRaRCvv1ERH5Y5i2eYuILLNf3y0il4RjOz1sd5GI3N0f21JKKRUamqeUiiwdpl2pIIjIXcARY8wDYdxGHNb8EXOMMR3h2o6fbYu97QXGa0JGpZRS7qB5Sqn+py1YSoWIiFwgIq/br+8SkeUiskFEykTkahH5nYjsFJFVIjLAft9cEVkvIptFZLXPzO0eFwFbPElLRJ4SkWvt16Ui8msR2WKve2oPcf2jiLwiImvs998kIj8Rka0islFE0u33/VhE8kRkh4g8D2CsOzDvAYvCUGRKKaX6keYppfqHVrCUCp8JWElnMfAMsM4YMxNoAa60k9cjwLXGmLnAk8A9PaxnAbC5l+3UGWPmAH8CfubnPacDVwNn2ds4aoyZDXwMLLPfcxsw2xhzBnCj1//dBJx7ks+qlFLKfTRPKRUGcZEOQKlT2FvGmHYR2QnEAqvs5TuBccAUrISyxurhQCxQ1cN6soD8Xrbzkv3vZqzk1JN1xpgmoElEGoCVXrGcYb/eATwrIq8Ar3j931pgRC/bV0op5U6ap5QKA61gKRU+rQDGmC4RaTfHH3jswjr2BMg1xpxzkvW0AIkn2w7Qif9jutXrdZfX755YAK4EzgOuAm4XkZl2d49EOwallFKnFs1TSoWBdhFUKnJ2A8NE5BwAERkgIjN6eF8+MDGcgYhIDDDaGLMO+DkwCEi2/zwZ2BXO7SullIpKmqeUckArWEpFiDGmDbgWuF9EtgPbgC/18Na3sO7YhVMs8IzdTWQr8LAx5rD9twuBN8K8faWUUlFG85RSzugw7Uq5gIi8DNxqjCnq5+0OB1YYYy7uz+0qpZRyF81TSh2nFSylXEBEpgDDjTHv9/N2zwLajTHb+nO7Siml3EXzlFLHaQVLKaWUUkoppUJEn8FSSimllFJKqRDRCpZSSimllFJKhYhWsJRSSimllFIqRLSCpZRSSimllFIhohUspZRSSimllAqR/wcjEX78ARS3fwAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Plot the membrane potentials\n",
"\n",
"plt.figure(figsize=(12,17))\n",
"for i in range(20):\n",
" plt.subplot(10,2,i+1)\n",
" plt.plot(t,state[:,i])\n",
" plt.title(\"Injected Current = {:0.1f}\".format(i/2))\n",
" plt.ylim([-90,60])\n",
" plt.xlabel(\"Time (in ms)\")\n",
" plt.ylabel(\"Voltage (in mV)\")\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FbHzaEbOYwHG"
},
"source": [
"#### Quantifying the Firing Rates against Input Current\n",
"\n",
"The firing frequency as a function of the input is shown in the figure below. The code to generate the firing rate is below."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "1LLkQbtqYwHG",
"outputId": "46832b30-1bc2-4a81-b063-13b93af4478d"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAX0klEQVR4nO3df5QddZ3m8fdjErQBJSARk6CbMGCQjUKkYVFcjws68QcDWYfxF3oYhxnO7LAOosQRV1ecnVmdE0dl5zjsRlAz6igImQRZ1wzDwiquoB3CECDkwAJimiDtLhHEBkJ49o+qJt2d7pvb6Vv33r71vM7hdFXdW1WfG+PTlW9976dkm4iIqI/ndbqAiIhorwR/RETNJPgjImomwR8RUTMJ/oiImpnd6QKaceihh3rRokWdLiMiYkbZuHHjL23PG799RgT/okWLGBgY6HQZEREziqSfTbQ9Qz0RETWT4I+IqJkEf0REzST4IyJqJsEfEVEzM2JWT0REnazbNMiqDVt5aMcwC+b2sXL5ElYsW9iy4yf4IyK6yLpNg1y0djPDO3cBMLhjmIvWbgZoWfhnqCcioous2rD1udAfMbxzF6s2bG3ZORL8ERFd5KEdw1Pavi8S/BERXWTB3L4pbd8XCf6IiC6ycvkS+ubMGrOtb84sVi5f0rJz5OZuREQXGbmBm1k9ERE1smLZwpYG/XgZ6omIqJkEf0REzST4IyJqJsEfEVEzld7clXQB8IeAgc3AB4D5wLeBFwMbgffbfrrKOiKiXqbb66bT+1etsit+SQuBPwX6bS8FZgHvBv4K+ILtI4FHgXOqqiEi6mek183gjmHM7l436zYNzoj926HqoZ7ZQJ+k2cD+wHbgFOCq8vU1wIqKa4iIGplur5tO798OlQW/7UHgc8CDFIH/K4qhnR22nynftg2Y8N8/ks6VNCBpYGhoqKoyI6LHTLfXTaf3b4cqh3oOBs4AFgMLgAOAtzS7v+3Vtvtt98+bN6+iKiOi10y3102n92+HKod63gTcb3vI9k5gLXAyMLcc+gE4HOiega+ImPGm2+um0/u3Q5Wzeh4ETpK0PzAMnAoMADcAZ1LM7DkbWF9hDRFRM9PtddPp/dtBtqs7uPRp4F3AM8AmiqmdCylC/5By2/tsP9XoOP39/R4YGKiszoiIXiRpo+3+8dsrncdv+1PAp8Ztvg84scrzRkTE5PLN3YiImknwR0TUTPrxR0TL9XrLg5kuwR8RLTXSsmDk26sjLQuApsJ7uvvH3mWoJyJaqg4tD2a6BH9EtFQdWh7MdAn+iGipOrQ8mOkS/BHRUnVoeTDT5eZuRLRUHVoezHSVtmxolbRsiIiYuslaNmSoJyKiZhL8ERE1k+CPiKiZBH9ERM1kVk9ED0qvnGgkwR/RY9IrJ/YmQz0RPSa9cmJvEvwRPSa9cmJvEvwRPSa9cmJvEvwRPSa9cmJvcnM3osekV07sTXr1RET0qPTqiYgIIMEfEVE7Cf6IiJpJ8EdE1Exm9URUIL1yopsl+CNaLL1yottlqCeixdIrJ7pdgj+ixdIrJ7pdgj+ixdIrJ7pdgj+ixdIrJ7pdbu5GtFh65US3S6+eiIgelV49EREBJPgjImonwR8RUTOV3tyVNBe4DFgKGPgDYCtwBbAIeAB4p+1Hq6wjYqrSMiF6WdVX/JcA37d9NHAssAX4GHC97aOA68v1iK4x0jJhcMcwZnfLhHWbBjtdWkRLVBb8kg4C3gBcDmD7ads7gDOANeXb1gArqqohYl+kZUL0uiqv+BcDQ8BXJW2SdJmkA4DDbG8v3/MwcNhEO0s6V9KApIGhoaEKy4wYKy0TotdVGfyzgdcAl9peBjzBuGEdF18imPCLBLZX2+633T9v3rwKy4wYKy0TotdVGfzbgG22bynXr6L4RfALSfMByp+PVFhDxJSlZUL0usqC3/bDwM8ljfy/5VTgLuAa4Oxy29nA+qpqiNgXK5Yt5DPveBUL5/YhYOHcPj7zjldlVk/0jKamc0o6GFgADAMP2H62yeN/EPimpP2A+4APUPyyuVLSOcDPgHdOueqIiq1YtjBBHz1r0uAvZ+WcB7wH2I/iRu0LgMMk3Qz8re0bGh3c9m3AHn0iKK7+IyKiAxpd8V8F/B3wr8tpmM+RdDzwfklH2L68wvoiIqLFJg1+229u8NpGYGMlFUVERKX2enNX0vWS3jZu2+rqSoqIiCo1c3N3MfBnkk6w/ely20Tj9hEtM91eOem1EzG5ZqZz7qC4GXuYpO+WN30jKjPdXjnptRPRWDPBL9vP2P4T4GrgJuAl1ZYVdTbdXjnptRPRWDNDPf91ZMH21yRtppjmGVGJ6fbKSa+diMYmveKXdIikQ4DvjCyX6/cDF7atwqid6fbKSa+diMYaDfVsBAbKnw+NWh7ZHlGJ6fbKSa+diMYazeNfPLIsaVPZYTOiciOzb/Z1Vs5094/odSo6I+/lTdKttl/Thnom1N/f74GB/CMjImIqJG20vcf0+zxsPSKiZho1afvwqNWXjFvH9ucrqyoiIirTaDrnC0ctf3ncekREzFCNbu5+erLXIiJi5mo01PMJ4Eu2H53k9VOA/W1fW1VxMXOlV05E92o01LMZuFbSk8Ct7H4Qy1HAccA/Af+56gJj5hnplTPSNmGkVw6Q8I/oApPO6rG93vbJwB8DdwKzgMeAbwAn2r7A9lB7yoyZJL1yIrrbXnv12L4HuKcNtUSPSK+ciO6WefzRcumVE9HdEvzRcumVE9HdmmnLHDEl6ZUT0d32GvySXgFcChxme6mkVwOn2/6LyquLGWvFsoUJ+ogu1cxQz5eBi4CdALZvB95dZVEREVGdZoJ/f9s/GbftmSqKiYiI6jUT/L+U9FuAASSdCWyvtKqIiKhMMzd3zwNWA0dLGqR49OJZlVYVHZeWCxG9q5ngt+03SToAeJ7txyUt3uteMWOl5UJEb2tmqOdqANtP2H683HZVdSVFp6XlQkRva9Sd82jgXwIHSXrHqJdeRNGsLXpUWi5E9LZGQz1LgNOAucDvjNr+OPBHFdYUHbZgbh+DE4R8Wi5E9IZGD2JZD6yX9FrbP25jTdFhK5cvGTPGD2m5ENFLmrm5u0nSeRTDPs8N8dj+g8qqio5Ky4WI3tZM8H8duBtYDvw5xVTOLVUWFZ2XlgsRvauZWT1H2v4k8ITtNcDbgX9VbVkREVGVZoJ/Z/lzh6SlwEHAS6orKSIiqtTMUM9qSQcDnwCuAQ4EPllpVRERUZlmHr14Wbn4A+AIAEkvr7KoiIioTsOhHkmvlXSmpJeU66+W9PfAj5o9gaRZkjZJurZcXyzpFkn3SrpC0n7T+gQRETElkwa/pFXAV4DfBf67pL8A/hG4BThqCuc4n7GzgP4K+ILtI4FHgXOmWnREROy7RkM9bweW2X6yHOP/ObDU9gPNHlzS4eVx/hL4sCQBpwDvLd+yBriY4glfERHRBo2Gep60/SSA7UeBe6YS+qUvAh8Fni3XXwzssD3yIJdtwISTxSWdK2lA0sDQ0NAUTxsREZNpdMV/hKRrRq0vHr1u+/RGB5Z0GvCI7Y2S3jjVwmyvpngOAP39/Z7q/hERMbFGwX/GuPW/nuKxTwZOl/Q2ilYPLwIuAeZKml1e9R8ODE7xuBERMQ2NmrT9r+kc2PZFFA9pp7ziv9D2WZK+A5wJfBs4G1g/nfNERMTUNPPN3Vb7M4obvfdSjPlf3oEaIiJqq5lv7k6b7RuBG8vl+4AT23HeiIjYUyeu+CMiooP2esUv6bvA+Fk1vwIGgP82MuUzIiJmhmau+O8Dfg18ufzvMYrHL76iXI+IiBmkmTH+19k+YdT6dyX91PYJku6sqrCYnnWbBvMErYiYUDPBf6Ckl9t+EJ7rzHlg+drTlVUW+2zdpsExz8wd3DHMRWs3AyT8I6KpoZ6PADdJukHSjcAPgQslHUDRaye6zKoNW8c8KB1geOcuVm3Y2qGKIqKbNNOP/3uSjgKOLjdtHXVD94tVFRb77qEdw1PaHhH10uw8/uOBReX7j5WE7b+rrKqYlgVz+xicIOQXzO3rQDUR0W32OtQj6evA54DXAyeU//VXXFdMw8rlS+ibM2vMtr45s1i5fEmHKoqIbtLMFX8/cIztdMicIUZu4GZWT0RMpJngvwN4KbC94lqihVYsW5igj4gJNRP8hwJ3SfoJ8NTIxr3144+IiO7UTPBfXHURERHRPs1M55xWX/6IiOgukwa/pJtsv17S44xt0ibAtl9UeXU1lpYLEVGVRk/gen3584XtKycgLRcioloN5/FLmiXp7nYVE4W0XIiIKjUMftu7gK1lY7Zok7RciIgqNTOr52DgznI65xMjGzOdszppuRARVWom+D9ZeRUxxsrlS8aM8UNaLkRE62Q6ZxdKy4WIqFKmc3aptFyIiKo0uuI/CzKdMyKi1zSa1fMPIwuSrm5DLRER0QaNgl+jlo+oupCIiGiPRsHvSZYjImIGazTGf6ykxyiu/PvKZcjN3YiIGa1Rr55Zk70WEREz116fuRsREb0lwR8RUTMJ/oiImknwR0TUTII/IqJmEvwRETWT4I+IqJkEf0REzST4IyJqprLgl/QySTdIukvSnZLOL7cfIuk6SfeUPw+uqoaIiNhTlVf8zwAfsX0McBJwnqRjgI8B19s+Cri+XI+IiDapLPhtb7d9a7n8OLAFWAicAawp37YGWFFVDRERsae2jPFLWgQsA24BDrO9vXzpYeCwSfY5V9KApIGhoaF2lBkRUQuVB7+kA4GrgQ/Zfmz0a7bNJL3+ba+23W+7f968eVWXGRFRG5UGv6Q5FKH/Tdtry82/kDS/fH0+8EiVNURExFhVzuoRcDmwxfbnR710DXB2uXw2sL6qGiIiYk+NnsA1XScD7wc2S7qt3PZx4LPAlZLOAX4GvLPCGiIiYpzKgt/2TYx9YPtop1Z13oiIaCzf3I2IqJkEf0REzST4IyJqJsEfEVEzCf6IiJpJ8EdE1EyCPyKiZhL8ERE1k+CPiKiZBH9ERM0k+CMiaibBHxFRMwn+iIiaSfBHRNRMgj8iomYS/BERNZPgj4iomQR/RETNJPgjImomwR8RUTMJ/oiImknwR0TUTII/IqJmEvwRETWT4I+IqJkEf0REzczudAG9at2mQVZt2MpDO4ZZMLePlcuXsGLZwk6XFRGR4K/Cuk2DXLR2M8M7dwEwuGOYi9ZuBkj4R0THZainAqs2bH0u9EcM79zFqg1bO1RRRMRuCf4KPLRjeErbIyLaKcFfgQVz+6a0PSKinRL8FVi5fAl9c2aN2dY3ZxYrly/pUEUREbvl5m4FRm7gZlZPRHSjBH9FVixbmKCPiK6UoZ6IiJpJ8EdE1EyCPyKiZhL8ERE105Gbu5LeAlwCzAIus/3ZVp9jur1y0msnInpV24Nf0izgS8CbgW3ATyVdY/uuVp1jur1y0msnInpZJ4Z6TgTutX2f7aeBbwNntPIE0+2Vk147EdHLOhH8C4Gfj1rfVm4bQ9K5kgYkDQwNDU3pBNPtlZNeOxHRy7r25q7t1bb7bffPmzdvSvtOt1dOeu1ERC/rRPAPAi8btX54ua1lptsrJ712IqKXdWJWz0+BoyQtpgj8dwPvbeUJptsrJ712IqKXyXb7Tyq9DfgixXTOr9j+y0bv7+/v98DAQDtKi4joGZI22u4fv70j8/htfw/4XifOHRFRd117czciIqqR4I+IqJkEf0REzST4IyJqpiOzeqZK0hDws33c/VDgly0sZybIZ66HfObeN93P+y9s7/EN2BkR/NMhaWCi6Uy9LJ+5HvKZe19VnzdDPRERNZPgj4iomToE/+pOF9AB+cz1kM/c+yr5vD0/xh8REWPV4Yo/IiJGSfBHRNRMTwe/pLdI2irpXkkf63Q9VZL0Mkk3SLpL0p2Szu90Te0iaZakTZKu7XQt7SBprqSrJN0taYuk13a6pqpJuqD8e32HpG9JekGna2o1SV+R9IikO0ZtO0TSdZLuKX8e3Ipz9Wzwj3qo+1uBY4D3SDqms1VV6hngI7aPAU4Czuvxzzva+cCWThfRRpcA37d9NHAsPf7ZJS0E/hTot72Uop37uztbVSW+Brxl3LaPAdfbPgq4vlyftp4NftrwUPduYnu77VvL5ccpwqDnnxwj6XDg7cBlna6lHSQdBLwBuBzA9tO2d3S0qPaYDfRJmg3sDzzU4XpazvYPgP83bvMZwJpyeQ2wohXn6uXgb+qh7r1I0iJgGXBLh0tphy8CHwWe7XAd7bIYGAK+Wg5vXSbpgE4XVSXbg8DngAeB7cCvbP9jZ6tqm8Nsby+XHwYOa8VBezn4a0nSgcDVwIdsP9bpeqok6TTgEdsbO11LG80GXgNcansZ8AQt+ud/tyrHtc+g+KW3ADhA0vs6W1X7uZh735L5970c/JU/1L3bSJpDEfrftL220/W0wcnA6ZIeoBjKO0XSNzpbUuW2Adtsj/xr7iqKXwS97E3A/baHbO8E1gKv63BN7fILSfMByp+PtOKgvRz8zz3UXdJ+FDeDrulwTZWRJIpx3y22P9/petrB9kW2D7e9iOJ/3/9pu6evBG0/DPxc0pJy06nAXR0sqR0eBE6StH/59/xUevyG9ijXAGeXy2cD61tx0I48c7cdbD8j6d8DG9j9UPc7O1xWlU4G3g9slnRbue3j5fONo7d8EPhmeUFzH/CBDtdTKdu3SLoKuJVi9tomerB1g6RvAW8EDpW0DfgU8FngSknnULSmf2dLzpWWDRER9dLLQz0RETGBBH9ERM0k+CMiaibBHxFRMwn+iIiaSfBH20n6dRPvuWxfmsxJOk7S2/Zhvxsl7fFQa0lzJH227I54q6QfS3rrVI8/HZIWSXrvuG3LJF2+D8c6VNJOSX88bvs/tarzY3S/BH90Jdt/aHtfvph0HDDl4G/gPwHzgaW2X0PRJOuFze5cNhWbdL1Ji4D3jtv2ceC/7MOxfg+4GXjPuO1fB/5kH44XM1Dm8UfbSfq17QMlvRG4GPglsBTYCLzPtiXdCFxoe0DSbwOfBp4P/B/gA7Z/LekEihbFBwBPAW8GNgN9FO05PgNcC/xNefw5wMW210vqA75K0db4booeMOfZHhhV5/4Ujf4WT9T3aORzlMtnAqfZ/n1JXwOepGiU9yPgkHHrXyr/mwf8Bvgj23eX+z0G9AMvBT5q+ypJNwOvBO6n6NB4GTBge0l57osp+tgcAbwcuICiNfdbyz+H3ylbHSDpB8CFwN8Db7S9rdx+MPDDsu1x9Lhc8UenLQM+RPHMhCMovoH8HEmHAp8A3lRecQ8AHy6/tXoFcL7tYyn6uTwB/EfgCtvH2b4C+A8UrRxOBP4NsKrsZvnvgN/YfiXFNySPn6C2I4EH97HZ3eHA62x/eIL11cAHbR9PEcJ/O2q/+cDrgdMovrUJRRO2H5af6QsUvxjuYKzfAk4BTge+Adxg+1XAMEXbaiS9DJhv+yfAlcC7Rna2/SjwfEkv3ofPGjNMz7ZsiBnjJ6OuOm+jGNa4adTrJ1H8UvhR0aaF/YAfA0uA7bZ/CjASzuV7RvttikZuF5brL6C4Kn4D5VCJ7dsl3d7iz/Ud27vGr5fdU18HfGdUrc8f9b51tp8F7pI0WQve+RStmUf7H7Z3StpM0aLk++X2zRR/plAE/ZXl8reBrwB/PeoYj1D8y+f/NvH5YgZL8EenPTVqeRd7/p0UcJ3tMWPSkl7V5PEF/K7treP2b2bfe4GXS3rRJFf9o8dJxz8K8IlJ1p8H7LB93CTnHP3nMVmRwxOc7ykA289K2undY7jPsvvP9D3ASyWdVa4vkHSU7XtGfYbhSc4ZPSRDPdHtbgZOlnQkgKQDJL0C2ArML8f5kfTC8sbp44y9+boB+GDZ1RFJy8rtP6C8YSppKfDq8Se2/RuKjqeXlENLSJon6ffKt/xC0islPQ/4t818mPIXyP0jx1Dh2L3sNv4zbaEYhmpa+Wd2oO2FtheVHU0/Q3mTt/zzeSnwwFSOGzNTgj+6mW0PAb8PfKscjvkxcHT5OM13AX8j6Z+B6yiuWG8AjpF0m6R3UczKmQPcLunOch3gUuBASVuAP6e4sTyRT1AMq9yl4iHY11LcgIVi7P1a4H9TPBmqWWcB55R138neHwl6O7BL0j9LusD23cBBkpqeXUQR8P8wbtvV7J7dczxws+1npnDMmKEyqye6UjlWfbrt+ztdSzeSdAHwuO2WPGtY0iXANbavb8Xxorvlij+6jqTrgM0J/YYuZez9gOm6I6FfH7nij4iomVzxR0TUTII/IqJmEvwRETWT4I+IqJkEf0REzfx/ej+llItQE/IAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Calculate the Firing Rates by counting the number of times the membrane potential crosses the threshold of 0mV for each neuron and dividing by the total time in seconds\n",
"fr = np.bitwise_and(state[:-1,:20]<0,state[1:,:20]>0).sum(axis=0)/0.2\n",
"\n",
"# Plot the Firing Rates\n",
"plt.plot(np.linspace(0,10,20),fr,\"o\")\n",
"plt.xlabel(\"Injected Current(mA)\")\n",
"plt.ylabel(\"Firing Rate (Hz)\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have simulated multiple independent systems of differential equations in a high efficient \"vectorized\" form, we can extend the ideas to more realistic networks consisting of neurons that interact with each other through non-linear connections in the form of excitatory and inhibitory synapses."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "i3PpqOI_YwHH"
},
"source": [
"# References\n",
"\n",
"(Dayan and Abbott, 2005) Peter Dayan and Larry F. Abbott, ``Theoretical Neuroscience - Computational and Mathematical Modeling of Neural Systems``, 2005.\n",
"\n",
"(Johnston and Wu, 1995) D. Johnston and S. M.S. Wu, ``Foundations of cellular neurophysiology``, 1995.\n",
"\n",
"(Huxley and Hodgkin, 1952) Huxley A. L. and Hodgkin A. F., ``Quantitative description of nerve current``, Journal of Physiology, vol. , number , pp. , 1952.\n",
"\n",
"(MOOC) , ``Neuronal dynamics``, . [online](https://www.edx.org/course/neuronal-dynamics)\n",
"\n",
"(MOOC) , ``Computational Neuroscience``, . [online](https://www.coursera.org/learn/computational-neuroscience)\n",
"\n",
"(Gerstner, Kistler et al., 2014) Wulfram Gerstner, Werner M. Kistler, Richard Naud et al., ``Neuronal dynamics: From single neurons to networks and models of cognition``, 2014.\n",
"\n"
]
}
],
"metadata": {
"colab": {
"name": "Day 3.ipynb",
"provenance": []
},
"interpreter": {
"hash": "67b97a161adb399ddc7ce6202c1fbd410e218862b7c30dc6e7156a57afb12a02"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autoclose": false,
"autocomplete": true,
"bibliofile": "../nerveFlow.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}